Разновидности ременных передач. Ременная передача для станков с чпу

Передачу механической энергии, осуществляемую гибкой связью посредством трения между ремнем и шкивом, называют ременной. Она состоит из двух шкивов 1 и 2 и ремня 3 (рис.15).

Рис. 15.

Классификация

1. В зависимости от формы поперечного сечения ремня различают следующие виды ременных передач (рис.15):

Плоскоременные (с прямоугольным профилем поперечного сечения ремня);

Клиноременные (с трапециевидным профилем поперечного сечения ремня);

Поликлиноременные (с бесконечными плоскими ремнями, имеющими продольные клиновые выступы-ребра на внутренней поверхности ремня, входящие в кольцевые клиновые канавки шкивов);

Круглоременные;

Зубчатые.

Рис. 16.

2. По взаимному расположению осей валов:

С параллельными осями (рис. 17, а , б );

С пересекающимися осями (рис. 17, г );

Со скрещивающимися (рис. 17, в ).


Рис. 17

3. По направлению вращения шкивов:

С одинаковым (рис. 17, а , в );

С противоположным (рис. 17, б ).

4. По способу создания натяжения ремня:

Простые (рис. 15);

С натяжным роликом (рис. 18);

С натяжным устройством.


Рис. 18.

Достоинства ременных передач :

Возможность передачи энергии на значительные расстояния: до 12…15 м - плоскими ремнями, до 6 м - клиновыми ремнями;

Простота и низкая стоимость конструкции;

Плавность и бесшумность хода, способность смягчать удары благодаря эластичности ремня и предохранять механизм от поломок при буксовании, вызванном перегрузкой;

Возможность передачи мощностей от долей киловатта до сотен киловатт (чаще до 50 кВт, реже до 300 кВт) при окружной скорости до 30 м/с;

Простота обслуживания и ухода;

Относительно высокий КПД: h = 0,91…0,98;

Передаточное отношение i ? 7 (обычно i ?4... 5).

Недостатки:

Непостоянство передаточного отношения вследствие упругого скольжения, меняющегося в зависимости от нагрузки;

Относительно большие габариты передачи и невысокая долговечность ремня (особенно в быстроходных передачах);

Вытягивание ремня в процессе эксплуатации передачи приводит к необходимости установки дополнительных устройств (натяжной ролик);

Большие нагрузки на валы и их опоры (подшипники).

Несмотря на перечисленные недостатки, ременные передачи по применению в промышленности и народном хозяйстве занимают второе место после зубчатых передач. В любой отрасли машиностроения и приборостроения можно встретить плоскоременную или клиноременную передачу: приводы насосов, вентиляторов, транспортеров, конвейеров, рольгангов и др.

Клиноременные и поликлиноременные передачи применяют при сравнительно больших передаточных отношениях, вертикальном и наклонном расположении параллельных осей валов, требовании малогабаритности передачи и меньших нагрузок на опоры валов, передаче энергии нескольким валам.

Круглоременные передачи предназначены в основном для передачи малых мощностей и потому имеют меньшее распространение (швейные машины, приборы, настольные станки и т.д.).

Зубчато-ременные передачи

Зубчатые (полиамидные) ремни сочетают в своей конструкции все преимущества плоских ремней и зубчатых зацеплений На рабочей поверхности ремней 4 имеются выступы, которые входят в зацепление в выступами на шкивах 1,2 и З. Полиамидные ремни пригодны для высокоскоростных передач, а также для передач с небольшим межосевым расстоянием. Они допускают значительные перегрузки, очень надежны и прочны.

Передаточное отношение ременных передач:

i= щ1 / щ2=n 1 /n 2 =D 2 /D 1 (1- e)

где щ1 и щ2 - угловые скорости на ведущем и ведомом валах;

n 1 и n 2 - частоты вращения валов;

D 2 и D 1 - диаметры ведущего и ведомого шкивов;

e--=?0,01…0,02 - коэффициент упругого скольжения.

Сшивку применяют для ремней всех типов. Она производится посредством жильных струн или ушивальниками-ремешками из сыромятной кожи III. Более совершенной и надежной считают сшивку встык жильными струнами с наклонными проколами IV.

Критерии работоспособности ременных передач

Основными критериями работоспособности ременных передач являются тяговая способность ремня и его долговечность. Основным расчетом является расчет по тяговой способности, который сводится к определению площади поперечного сечения ремня, обеспечивающего передачу необходимого усилия. Долговечность ремня, которая определяется в основном его усталостной прочностью, зависит не только от величины напряжений, но и от характера и частоты цикла изменения этих напряжений (или числа пробегов ремня)

n--=--u/----l --Ј--,

где u--- окружная скорость, м/с;

l - длина ремня, м;

[n] - допускаемое число пробегов ремня:

Для плоских ремней Ј?5; - для клиновых --10 .

Практика показывает, что при соблюдении необходимых рекомендаций долговечность ремней составляет 2000…3000 часов.

Конструкции основных элементов ременных передач

Ремень является тяговым органом, от качества которого зависят долговечность и нормальная работа передачи. К нему предъявляют следующие требования: достаточная прочность, надежность и долговечность, невысокая стоимость и не дефицитность материала ремня; высокая тяговая способность и эластичность; достаточно высокий коэффициент трения между ремнем и шкивом.

Плоские приводные ремни представляют собой гибкую конечную или реже бесконечную ленту из прорезиненной хлопчатобумажной ткани или кожи.

Кожаные ремни обладают высокой тяговой способностью упругостью и эластичностью. Из-за дефицитности и высокой стоимости их рекомендуют к применению только в ответственных передачах с часто изменяющимися нагрузками и высокими скоростями до 40 м/с.

Резинотканевые ремни при спокойных нагрузках обладают хорошей тяговой способностью и упругостью, малодефицитны, а потому широко распространены. Они работают в широком диапазоне мощностей (до 50 кВт) со значительными скоростями (до 30 м/с).

изготовляют бесконечными (бесшовными) в специальных пресс-формах. Они состоят из крученого прорезиненного хлопчатобумажного или синтетического шнура (корда), расположенного в области нейтрального слоя ремня, резинотканевого или резинового слоя, расположенного над кордом и работающего на растяжение при изгибе ремня, резинового слоя, расположенного под кордом и работающего на сжатие при изгибе и обертки из прорезиненной ткани. Клиновые ремни подразделяются на кордтканевые (рис. 19,а) и корд-шнуровые (рис.19,б).

Рис. 19.

Применение клинового ремня позволило увеличить тяговую способность передачи за счет повышения трения и сцепление ремня со шкивом по сравнению с плоскоременной передачей.

В поликлиновых ремнях (стандарта нет) несущий слой выполняют в виде кордшнура из химических волокон (вискоза, лавсан, стекловолокно).

Эти ремни сочетают достоинства плоских ремней - монолитность и гибкость и клиновых - повышенное сцепление со шкивом.

Зубчатые ремни способны передавать энергию при неизменном передаточном отношении с высокими окружными скоростями и мощность до сотен киловатт. Эти ремни изготовляют из армированного металлическим тросом неопрена, значительно реже используют пластмассу (полиуретан).

Шкивы ременных передач изготовляют из стали, алюминиевых сплавов или текстолита при u-->?30 м/с. Наиболее распространенным материалом для изготовления шкивов при u--Ј?30 м/с является серый чугун СЧ 15 и СЧ 21, при u--Ј?25 м/с - СЧ 12

Рис.20

Форму канавки шкива (рис. 20) в клиноременной передаче выполняют так, чтобы между ремнем и ее основанием был гарантированный зазор, при этом рабочими являются боковые грани ремня. В то же время ремень не должен выступать за пределы наружного диаметра шкива, иначе своими острыми кромками канавка будет быстро разрушать ремень.

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в секунду. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому - рёбра или ручьи. Количество их может быть от трёх до двадцати.

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти - двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Обозначение PH PJ PK PL PM
Шаг ребер, S, мм 1.6 2.34 3.56 4.7 9.4
Высота ремня, H, мм 2.7 4.0 5.4 9.0 14.2
Нейтральный слой, h0, мм 0.8 1.2 1.5 3.0 4.0
Расстояние до нейтрального слоя, h, мм 1.0 1.1 1.5 1.5 2.0
13 20 45 75 180
Максимальная скорость, Vmax, м/с 60 60 50 40 35
Диапазон длины, L, мм 1140…2404 356…2489 527…2550 991…2235 2286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Как для ремня, так и для ответного шкива имеется соответствующая таблица с характеристиками для изготовления шкивов.

Сечение PH PJ PK PL PM
Расстояние между канавками, e, мм 1,60±0,03 2,34±0,03 3,56±0,05 4,70±0,05 9,40±0,08
Суммарная погрешность размера e, мм ±0,3 ±0,3 ±0,3 ±0,3 ±0,3
Расстояние от края шкива fmin, мм 1.3 1.8 2.5 3.3 6.4
Угол клина α, ° 40±0,5° 40±0,5° 40±0,5° 40±0,5° 40±0,5°
Радиус ra, мм 0.15 0.2 0.25 0.4 0.75
Радиус ri, мм 0.3 0.4 0.5 0.4 0.75
Минимальный диаметр шкива, db, мм 13 12 45 75 180

Минимальный радиус шкива задаётся не спроста, этот параметр регулирует срок службы ремня. Лучше всего будет если немного отступить от минимального диаметра в большую сторону. Для конкретной задачи мы выбрали самый распространённый ремень типа «РК». Минимальный радиус для данного типа ремней составляет 45 миллиметров. Учтя это, мы будем отталкиваться ещё и от диаметров имеющихся заготовок. В нашем случае имеются заготовки диаметром 100 и 80 миллиметров. Под них и будем подгонять диаметры шкивов.

Начинаем расчёт. Приведём ещё раз наши исходные данные и обозначим цели. Скорость вращения вала электродвигателя 2790 оборотов в минуту. Ремень поликлиновидный типа «РК». Минимальный диаметр шкива, который регламентируется для него, составляет 45 миллиметров, высота нейтрального слоя 1,5 миллиметра. Нам нужно определить оптимальные диаметры шкивов с учётом необходимых скоростей. Первая скорость вторичного вала 1800 оборотов в минуту, вторая скорость 3500 оборотов в минуту. Следовательно, у нас получается две пары шкивов: первая 2790 на 1800 оборотов в минуту, и вторая 2790 на 3500. Первым делом найдём передаточное отношение каждой из пар.

Формула для определения передаточного отношения:

, где n1 и n2 - скорости вращения валов, D1 и D2 - диаметры шкивов.

Первая пара 2790 / 1800 = 1.55
Вторая пара 2790 / 3500 = 0.797

, где h0 нейтральный слой ремня, параметр из таблицы выше.

D2 = 45x1.55 + 2x1.5x(1.55 - 1) = 71.4 мм

Для удобства расчётов и подбора оптимальных диаметров шкивов можно использовать онлайн калькулятор.

Инструкция как пользоваться калькулятором . Для начала определимся с единицами измерений. Все параметры кроме скорости указываем в милиметрах, скорость указываем в оборотах в минуту. В поле «Нейтральный слой ремня» вводим параметр из таблицы выше столбец «PК». Вводим значение h0 равным 1,5 миллиметра. В следующем поле задаём скорость вращения валя электродвигателя 2790 оборотов в минуту. В поле диаметр шкива электродвигателя вводим значение минимально регламентируемое для конкретного типа ремня, в нашем случае это 45 миллиметров. Далее вводим параметр скорости, с которым мы хотим, чтобы вращался ведомый вал. В нашем случае это значение 1800 оборотов в минуту. Теперь остаётся нажать кнопку «Рассчитать». Диаметр ответного шкива мы получим соответствующем в поле, и оно составляет 71.4 миллиметра.

Примечание: Если необходимо выполнить оценочный расчёт для плоского ремня или клиновидного, то значением нейтрального слоя ремня можно пренебречь, выставив в поле «ho» значение «0».

Теперь мы можем (если это нужно или требуется) увеличить диаметры шкивов. К примеру, это может понадобится для увеличения срока службы приводного ремня или увеличить коэффициент сцепления пара ремень-шкив. Также большие шкивы иногда делают намеренно для выполнения функции маховика. Но мы сейчас хотим максимально вписаться в заготовки (у нас имеются заготовки диаметром 100 и 80 миллиметров) и соответственно подберём для себя оптимальные размеры шкивов. После нескольких переборов значений мы остановились на следующих диаметрах D1 - 60 миллиметров и D2 - 94,5 миллиметров для первой пары.

Ременная передача - это передача механической энергии при помощи гибкого элемента (ремня) за счёт сил тре-ния или сил зацепления (зубчатые ремни). Состоит из ведущего и ведомого шкивов и ремня (одного или нескольких). Ременная передача относится к передачам трением с гибкой связью.

Классификация ременных передач

В зависимости от формы поперечного сечения ремня ременные передачи делят на:
плоскоременные (а);
клиноременные (с трапециевидным профилем) (б);
круглоременные (с круглым профилем) (в);
поликлиноременные (г);
передачи с зубчатыми ремнями.
В современном машиностроении наибольшее применение имеют клинове и поликлинове ремни. Передачи с круг-лым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

В зависимости от назначения передачи и взаимного расположения осей:
открытые с параллельными осями валов и вращением шкива в одном направлении;
перекрестные с параллельными осями валов и вращением шкивов в противоположных направлениях;
полу-перекрестные со скрещивающимися осями;
угловые со скрещивающимися и пересекающимися осями валов.

Достоинства и недостатки ременных передач

Достоинства ременных передач:
Простота конструкции и малая стоимость.
Возможность передачи мощности на значительные расстояния (до 15 метров).
Плавность и бесшумность работы.
Смягчение вибрации и толчков вследствие упругой вытяжки ремня.
Недостатки ременных передач:
Большие габаритные размеры, в особенности при передаче значительных мощностей.
Малая долговечность ремня в быстроходных передачах.
Большие нагрузки на валы и подшипники от натяжения ремня.
Непостоянное передаточное число из-за неизбежного упругого проскальзывания ремня.
Неприменимость во взрывоопасных местах вследствие электризации ремня.
Недостатки ременных передач (в сравнении с цепной передачей):
большие габариты;
малая несущая способность;
проскальзывание (не относится к зубчатым ремням);
малая долговечность.
Достоинства ременных передач (в сравнении с цепной передачей):
плавность работы;
бесшумность;
компенсация перегрузок;
отсутствие в необходимости смазки;
малая стоимость;
легкий монтаж;
возможность работы на высоких окружных скоростях;
при выходе из строя, нет повреждений.

Применение ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по кон-структивным соображениям межосевое расстояние a должно быть достаточно большим, а передаточное число u не строго постоянным (в приводах станков, транспортеров, дорожных и строительных машин и т.п.)
Мощность, передаваемая ременной передачей, обычно до 50 кВт и в редких случаях достигает 1500 кВт. Скорость ремня колеблется в пределах 5…50 м/с, а в сверхскоростных передачах может достигать 100 м/с.
Ограничение мощности нижнего предела скорости вызвано большими габаритами передачи.

Шкивы ременных передач

Шкивы выполняют из стали или чугуна. В быстроходных передачах применяют шкивы из алюминиевых сплавов или текстолита. Форма рабочей поверхности обода шкива зависит от вида ремня. Для плоских ремней шкивы имеют гладкую рабочую поверхность. Для центрирования ремня поверхность ведомого шкива делается выпуклой, а ведуще-го – цилиндрической. Для клиновых ремней конструкция шкивов и размеры обода зависят от числа и размера канавок ремней.

Ремни ременных передач

Материал плоского приводного ремня должен обладать достаточной прочностью, изностойкостью, эластичностью и долговечностью, хорошо сцепляться со шкивами и иметь низкую стоимость.

Для плоскоременных передач применяют следующие типы ремней:
Кожаные ремни - обладают хорошей тяговой способностью, хорошо переносят колебания и нагрузки, но они дороги и дефицитны.
Прорезиненные ремни - состоят из нескольких слоев хлопчатобумажной ткани соединенных собой вулкани-зированной резиной. Резина обеспечивает работу ремня, как единого целого, защищает ткань от повреждений и по-вышенного коэффициента трения, но разрушается от попадания масла, бензина и щелочей.
Хлочато-бумажные ремни – изготавливают как цельную ткань с несколькими слоями основы, пропитанных специальным составом (битум, озакериб). Эти ремни легкие и гибкие, могут работать на шкивах малых диаметров с большими скоростями, но обладают меньшей долговечностью и тяговой способностью.
Шерстяные ремни – ткань с многослойной шерстяной основой и хлопчато-бумажным утком, пропитанные специальным составом (сурик на олифе). Обладают значительной упругостью, менее чувствительны к температурной влажности и кислотам, но обладают низкими тяговыми способностями.
Пленочные ремни новый тип ремней из пластмасс на основе полиамидных смол, армированных кордом из капрона или лавсана. Обладают высокими статической прочностью и сопротивлением усталости. Применяются для передачи с высокой мощностью и быстроходностью.
Для клиноременной передачи применяют прорезиненные ремни двух конструкций: с несущим элементом из нескольких слоев ткани или слоя шнура навитого по спирали, завулканизированных в резину, с тканевой оберткой или без нее.

Ре­мённая передача относится к механическим передачам с гибкой связью, в ко­торых гибкими промежуточными звеньями могут быть ремни, цепи или кана­ты. Ремённые передачи плоским ремнём получили распространение в XIX веке для привода текстильных и токарных станков. Затем были предложены клино­вые и зубчатые ремни. По принципу работы различают ремённые передачи трением (большинство передач) и зацеплением (зубчато-ремённые передачи).

Приступая к изучению этой темы, прежде всего, следует уяснить отличие ремённой передачи от всех других. Это отличие состоит в том, что при увели­чении нагрузки основная деталь передачи - ремень - до конца использует свою тяговую способность, определяемую силой трения между ремнём и шкивом, а затем начинается буксование шкива по ремню. В результате сильного нагрева ремень может быть разрушен и передача выходит из строя.

Ремённая передача (рис. 102,а)состоит из двух шкивов 1 и 2, ремня 3 и на­тяжного устройства 4. Механическая энергия от ведущего шкива к ведомому шкиву передаётся за счёт сил трения, возникающих при надевании ремня на шкивы с предварительным (монтажным) натяжением Fo. По форме поперечно­го сечения ремней различают передачи с плоским (рис. 102,б), клиновым (рис. 102, в), поликлиновым (рис. 102, г) и зубчатым ремнём.

Обычно ремённые передачи используют в качестве первой от двигателя ступени привода. В этом случае её габариты и масса оказываются сравнительно небольшими.

Достоинства ремённой передачи трением: возможность работы с высокими скоростями, предохранение узлов привода от перегрузок, простота конструкции, бесшумность при работе, дешевизна.

Недостатки: малая долговечность ремня в быстроходных передачах, большие габариты передачи, зна­чительные усилия на валы и опоры.

К материалам ремней предъявляются требования высокой прочности при переменных напряжениях, износостойкости, максимального коэффициента трения по рабочей поверхности шкива, минимальной изгибной жёсткости. Область применения плоскоремённых передач - быстроходные переда­чи при высоких требованиях к плавности работы.

Рис.102. Ремённая передача (а) и форма поперечного сечения ремней: б - плоского, в - клинового, г – поликлинового.

Высокоскоростные плоскоремённые передачи применяют как ускоритель­ные в приводах быстроходных технологических машин, например, шлифо­вальных станков, центрифуг и др. При скорости ремня v > 30 м/с передача мощности может и должна осуществляться только плоскими тонкими бесшов­ными (бесконечными) ремнями в виде замкнутой ленты определённой длины. Никакие сшивки или другие виды соединения концов ремня высокоскоростных передач недопустимы, так как ремни неизбежно рвутся от динамических воздействий в местах соединения. Быстроходные ремни выполняют тонкими из соображений долговечности, требующей минимальных напряжений изгиба, от которых, главным образом, при большом числе перегибов ремня в секунду за­висит усталостная прочность материала ремня.

Современными типами плоских бесконечных ремней являются синтетические тканые (рис. 103, а, вверху) и прорезиненные кордшнуровые ремни (рис. 103, а, внизу). Благодаря высокой упругости материала они хорошо амортизи­руют колебания нагрузки и вибрации деталей. Ширина синтетических тканых ремней от 10 до 100 мм, толщина ремня 0,8 или 1 мм, диапазон длин от 250 до 3350 мм. Допустимая скорость до 75 м/с. Ширина прорезиненных кордошнуровых ремней от 30 до 60 мм, толщина 2,8 мм, внутренняя длина от 500 до 5600 мм. Допустимая скорость до 35 м/с. При расчёте плоскоремённой передачи определяют размеры поперечного сечения ремня. Изменением ширины плоского ремня b р можно варьировать нагрузочную способность передачи.

Рис. 103. Конструкции поперечного сечения тяговых ремней: а - плоских, б - клиновых, в - поликлиновых

Клиноремённые передачи имеют универсальное назначение. Клиновые ремни обеспечивают большую тяговую способность и меньшие габариты передачи для одинаковой мощности по сравнению с передачами плоским ремнём. Распространение получили кордтканевые и кордшнуровые ремни (рис. 103, б)слойной конструкции, изготовляемые бесконечными. Клиновые ремни в пере­даче применяют от 2 до 8 штук в комплекте, чтобы варьировать нагрузочную способность передачи. Из-за «рассеяния» длин ремней нагрузка между ними в комплекте распределяется неравномерно, поэтому в клиноремённых передачах требуется подбирать ремни с минимальным отклонением по длине. Клиновые ремни выполняют с углом φ = 36...40°. Отношение большего основания трапециевидного сечения к высоте b p /h ≈ 1,6 (ремни нормального сечения) или b p /h ≈ 1,2 (узкие клиновые ремни). Узкие клиновые ремни вслед­ствие большей гибкости дают возможность заменить ремни нормальных сече­ний, уменьшить количество ремней в комплекте и размеры передачи.

Поликлиновой ремень (рис. 103, е) - плоский бесконечный ремень со шну­ровым кордом и клиновыми выступами на нижней стороне. Он имеет строго фиксированное и постоянное положение нейтрального слоя, а также ширину и длину рабочих клиньев. Это гарантирует спокойную работу, позволяет приме­нить шкивы меньших диаметров и работать при скоростях до 40 м/с. Ширина поликлинового ремня при передаче такой же мощности значительно меньше ширины комплекта обычных клиновых ремней.

Тип клинового ремня - ремень нормального сечения (Z, А, В, С, D, Е, ЕО), узкий клиновой ремень (сечения УО, УА, УБ или УВ) или поликлиновой ре­мень (сечения К, Л или М) - назначают в зависимости от величины вращающе­го момента на ведущем шкиве Т 1 , Н∙м. При расчёте клиноремённой передачи определяют не размеры поперечного сечения ремня, а количество клиновых ремней z p в комплекте или количество клиньев z поликлинового ремня.

Зубчато-ремённая передача (рис. 104) соединяет в себе достоинства ре­мённых и цепных передач. По названию и конструкции тягового органа эту пе­редачу относят к ремённым, а по принципу работы - к цепным передачам. Та­кая передача компактна, работает плавно и почти бесшумно, не требует смазы­вания и тщательного ухода. Принцип зацепления устраняет проскальзывание ремня на шкивах, нет необходимости и в большом предварительном натяжении ремня.

Обычно клиноременная передача представляет собой от­крытую передачу с одним или несколькими ремнями. Рабочими поверх­ностями ремня являются его боковые стороны.

По сравнению с плоскоременными клиноременные передачи обла­дают большей тяговой способностью, имеют меньшее межосевое рас­стояние, допускают меньший угол обхвата малого шкива и большие пе­редаточные числа < 10). Однако стандартные клиновые ремни не до­пускают скорость более 30 м/с из-за возможности крутильных колебаний ведомой системы, связанных с неизбежным различием ширины ремня по его длине и, как следствие, непостоянством передаточного отношения за один пробег ремня. У клиновых ремней большие потери на трение и на­пряжения изгиба, а конструкция шкивов сложнее.

Клиноременные передачи широко используют в индивидуальных приво­дах мощностью до 400 кВт. КПД клиноременных передач η = 0,87 ... 0,97.

Поликлиновые ременные передачи не имеют боль­шинства недостатков, присущих клиноременным, но сохраняют достоин­ства последних. Поликлиновые ремни имеют гибкость, сравнимую с гиб­костью резинотканевых плоских ремней, поэтому они работают более плавно, минимальный диаметр малого шкива передачи можно брать меньшим, передаточные числа увеличить до и < 15, а скорость ремня - до 50 м/с. Передача обладает большой демпфирующей способностью.

Клиновые и поликлиновые ремни. Клиновые приводные ремни выполняют бесконечными резинотканевой конструкции трапецеидально­го сечения с углом клина φ 0 = 40°. В зависимости от отношения ширины b а большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений (b 0 /h = 1,6, см.); узкие (b 0 /h= 1,2); широкие (b 0 /h =2,5 и более; применяют для клиноременных вариаторов).

В настоящее время стандар­тизованы клиновые рем­ни нормальных сече­ний, предназначенные для при­водов станков, промышленных установок и стационарных сель­скохозяйственных машин. Ос­новные размеры и методы контроля таких ремней регламентированы ГОСТ 1284.1-89. Ремни сечения Е0 применяют только для действующих машин и установок. Стан­дартные ремни изготовляют двух видов: для Умеренного и тропического климата, работаю­щих при температуре воздуха от минус 30 до плюс 60 °С, и для холодного и очень холодного климата, работающих при температуре от ми­нус 60 до плюс 40 °С. Ремни сечений А, В и С для увеличения гибкости могут изготовляться с зубь­ями (пазами) на внутренней поверхности, полу­ченными нарезкой или формованием (рис. 6.9, в).

Клиновые ремни (рис. 6.9, а, 6) состоят из резинового или резинотканевого слоя растяже­ния 1, несущего слоя 2 на основе материалов из химических волокон (кордткань или кордшнур), резинового слоя сжатия 3 и оберточного слоя прорезиненной ткани 4. Сечение ремня кордтканевой (а), кордшнуровой (б) конструк­ции показаны на рис. 6.9. Более гибки и долго­вечны кордшнуровые ремни, применяемые в быстроходных передачах. Допускаемая скорость для ремней нормальных сечений v < 30 м/с.


Технические условия на ремни приводные клиновые нормальных се­чений регламентированы ГОСТ 1284.2-89, а передаваемые мощности - ГОСТ 1284.3-89.

Кроме вышеуказанных приводных клиновых ремней стандартизова­ны: ремни вентиляторные клиновые (для двигателей автомобилей, трак­торов и комбайнов) и ремни приводные клиновые (для сельскохозяйст­венных машин).

При необходимости работы ремня с изгибом в двух направлениях применяют шестигранные (сдвоенные клиновые) ремни.

Весьма перспективны узкие клиновые ремни, которые пе­редают в 1,5-2 раза большие мощности, чем ремни нормальных сече­ний. Узкие ремни допускают меньшие диаметры малого шкива и работа­ют при скоростях до 50 м/с; передачи получаются более компактными. Четыре сечения этих ремней У0 (SPZ), УА (SPA), УБ (SPB), УВ (SPC) заменяют семь нормальных сечений.

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38 605 205-95.

Следует отметить, что в клиноременных передачах с несколькими ремнями из-за разной длины и неодинаковых упругих свойств нагрузка между ремнями распределяется неравномерно. Поэтому в передаче не рекомендуется использовать более 8...12 ремней.

Поликлиновые ремни (см. рис. 6.1, г) представляют собой бесконечные плоские ремни с ребрами на нижней стороне, работающие на шкивах с клиновыми канавками. По всей ширине ремня расположен высокопрочный синтетический шнуровой корд; ширина такого ремня в 1,5-2 раза меньше ширины комплекта ремней нормальных сечений при одинаковой мощности передачи.

Поликлиновые ремни пока не стандартизованы; на основании нор­мали изготовляют три сечения кордшнуровых поликлиновых ремней, обозначаемых К, Л и М, с числом ребер от 2 до 50, длиной ремня от 400 до 4000 мм и углом клина φ 0 = 40°.

По сравнению с плоскоременными клиноременные передачи облада­ют значительно большей тяговой способностью за счет повышенного сцепления, обусловленного приведенным коэффициентом трения f " между ремнем и шкивом.

Как известно из рассматриваемой в теоретической механике теории трения клинчатого ползуна,

f "= f sin(a /2),

где f - коэффициент трения на плоскости (для прорезиненной ткани по чугуну f = 0,3); a - угол профиля канавки шкива.

Приняв a = φ 0 = 40°, получим

f " = f sin20°=3 f .

Таким образом, при прочих равных условиях клиновые ремни способны передавать в три раза боль­шую окружную силу, чем плоские.

Расчет передачи с клино­выми ремнями. Расчет проводят из условий обеспечения тяговой способности и долговечности ремней; он основан на тех же предпосылках, что и расчет плос­коременных передач.

Расчет ремней выполняют с помощью таблиц, содержащих номинальные мощности, передаваемые одним ремнем в зависимости от сече­ния ремня, расчетного диаметра малого шкива, его частоты вращения и передаточного числа (расчетный диаметр шкива клиноременной передачи соответствует положению нейтрального слоя ремня, установленного в канавке шкива; см. диаметр d p на рис. 6.14).

Проектный расчет клиноременной передачи начинают с вы­бора сечения ремня по заданной передаваемой мощности и часто­те вращения малого шкива с помощью графиков (рис. 6.10). При мощно­стях до 2 кВт применяют сечение Z, а сечение ЕО - при мощностях свы­ше 200 кВт.

ремня............ Z А В С D Е УО УА УБ УВ

d min , мм......... 63 90 125 200 355 500 63 90 140 224

Следует помнить, что вышеприведенные значения расчетных диа­метров малого шкива обеспечивают минимальные габариты передачи, но с увеличением этого диаметра возрастают тяговая способность и КПД передачи, а также долговечность ремней. При отсутствии жестких требо­ваний к габаритам передачи расчетный диаметр d 1 малого шкива следует принимать больше минимально допустимого значения. Диаметр d 2 боль­шого шкива определяют по формуле

d 2 =ud 1 ,

где и - передаточное число передачи; полученное значение округляют до ближайшего стандартного размера.

Расчетные диаметры шкивов клиноременных передач выбирают из стандартного ряда (мм):

63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 315; 355; 400; 450; 500 и т. д.

v = πd 1 n 1 / 60 ,

где d 1, n 1 - расчетный диаметр и частота вращения малого шкива.

В ходе дальнейшего расчета находят все геометрические параметры передачи.

Межосевое расстояние а предварительно определяют по условию

0,55(d 1 + d 2) + h2(d 1 + d 2) ,

где h - высота сечения ремня. Следует помнить, что с увеличением ме­жосевого расстояния долговечность ремней увеличивается.

Расчетная длина ремня L p вычисляется по формуле, приве­денной в § 6.1, и округляется до ближайшей стандартной длины из ряда (для сечения В) (мм): 800; 900; 1000; 1120; 1250; 1400; 1600; 1800; 2000; 2120; 2240 и т. д. до 6300. Затем по формуле, приведенной в § 6.1, опре­деляют окончательное межосевое расстояние а в зависимости от приня­той стандартной расчетной длины ремня.

Угол обхвата а, на малом шкиве вычисляется по формуле,

приведенной в § 6.1.

Мощность Р р, передаваемая одним ремнем, рассчитывается по

Р p = Р o С a С L /С p ,

где Р о - номинальная мощность, передаваемая одним ремнем (для ремней сечения В находится по табл. 6.2; для других сечений - по таблицам ГОСТа).

С а - коэффициент угла обхвата:

а° 1 ............. 180 160 140 120 90

С а................ 1,0 0,95 0,89 0,82 0,68

C L - коэффициент длины ремня, зависящий от отношения принятой длины L ремня к исходной длине L Р, указанной в стандарте:

L/L p .......... 0,3 0,5 0,8 1,0 1,6 2,4

C L ............. 0,79 0,86 0,95 1,0 1,1 1,2

(подробная таблица значений C L приведена в стандарте); С р - коэффици­ент динамичности и режима работы; ориентировочно принимается как для плоскоременных передач, см. § 6.2 (подробная таблица значений С р приведена в стандарте).

Дальнейший расчет клиноременной передачи сводится к определе­нию числа ремней z по формуле

где Р - передаваемая мощность на ведущем валу; C z - коэффициент, учитывающий число ремней в комплекте, вводится при z > 2:

z..................... 2-3 4-6 >6

С z ................... 0,95 0,90 0,85

Во избежание значительной неравномерности распределения нагруз­ки между ремнями не рекомендуется в одной передаче использовать бо­лее 8 ремней нормального сечения и 12 узких ремней; число ремней мел­ких сечений не следует брать больше 6.

R = 2F 0 z sin(a 1 /2), где F o - натяжение ветви одного ремня; a 1 - угол обхвата малого шкива.

Величину F 0 натяжения ветви одного ремня вычисляют по формуле

F 0 =(0,85РС р С z)/zνC a + θν 2

где v - окружная скорость ремня; θ- коэффициент, учитывающий влияние центробежных сил:

Сечение ремня.... Z А В С D E E0

θ, Н*с 2 /м 2 0,06 0,1 0,18 0,3 0,6 0,9 1,5

Передачи с узкими и поликлиновыми ремнями рассчитывают по ана­логичной методике. Таблицы мощностей, передаваемых одним узким ремнем и поликлиновым ремнем с 10 ребрами, имеются в учебных посо­биях по курсовому проектированию деталей машин.

При расчете поликлиновых ремней определяют число ребер z по формуле

z =10P/P p

где Р - передаваемая мощность на ведущем валу; Р р - мощность, пере­даваемая ремнем с 10 ребрами.

Расчет долговечности клиновых ремней нормальных сече­ний установлен ГОСТ 1284.2-89. Средний ресурс L h ср ремней в эксплуатации для среднего режима работы устанавливается 2000 ч. При легких, тяжелых и очень тяжелых режимах работы расчетный ре­сурс вычисляют по формуле

L hp = L h ср K 1 K 2

где К 1 - коэффициент режима работы, равный: для легкого режима - 2,5; для тяжелого режима - 0,5; для очень тяжелого режима - 0,25; К 2 - коэффициент, учитывающий климатические условия эксплуатации, рав­ный: для районов с холодным и очень холодным климатом - 0,75; для остальных районов - 1,0.

Режим работы для конкретных машин устанавливают по ГОСТу. Так, например, для станков с непрерывным процессом резания (токарные, сверлильные, шлифовальные) режим работы полагается легким; для фре­зерных, зубофрезерных станков режим работы полагается средним; стро­гальные, долбежные, зубодолбежные и деревообрабатывающие стан­ки работают в тяжелом режиме; очень тяжелый режим работы полага­ется для подъемников, экскаваторов, молотов, дробилок, лесопильных рам и др.