Расчет аэродинамики автомобиля. Как это работает: Модели для аэродинамической трубы

С тех пор как первый человек укрепил на конце копья заточенный камень, люди всегда пытаются найти наилучшую форму предметам, двигающимся в воздушной среде. Но автомобиль оказался очень сложной аэродинамической головоломкой.

Основы тяговых расчетов движения автомобилей по дорогам предлагают нам четыре основные силы, действующие на автомобиль во время движения: сопротивление воздуха, сопротивление качению, сопротивление подъему и инерционные силы. При этом отмечается, что основными являются лишь первые две. Сила сопротивления качению автомобильного колеса в основном зависит от деформации шины и дороги в зоне контакта. Но уже при скорости движения 50-60 км/ч сила сопротивления воздуха превышает любую другую, а на скоростях свыше 70-100 км/ч превосходит их все вместе взятые. Для того чтобы доказать это утверждение, необходимо привести следующую приближенную формулу: Px=Cx*F*v2, где: Px – сила сопротивления воздуха; v – скорость автомобиля (м/сек); F – площадь проекции автомобиля на плоскость, перпендикулярную продольной оси автомобиля, или площадь наибольшего поперечного сечения автомобиля, т. е. лобовая площадь (м2); Cx – коэффициент сопротивления воздуха (коэффициент обтекаемости). Обратите внимание. Скорость в формуле стоит в квадрате, и это означает, что при ее увеличении, например, в два раза сила сопротивления воздуха увеличивается в четыре раза.

При этом затраты мощности, необходимые на ее преодоление, вырастают в восемь раз! В гонках Nascar, где скорости зашкаливают за отметку в 300 км/ч, экспериментальным путем установлено, что для увеличения максимальной скорости всего на 8 км/ч необходимо повысить мощность двигателя на 62 кВт (83 л. с.) или уменьшить Cx на 15%. Есть и иной путь – уменьшить лобовую площадь автомобиля. Многие скоростные суперкары значительно ниже обычных автомобилей. Это как раз и является признаком работ по снижению лобовой площади. Однако производить эту процедуру можно до определенных пределов, иначе таким автомобилем будет невозможно пользоваться. По этой и другим причинам обтекаемость является одним из основных вопросов, возникающих при проектировании автомобиля. Конечно, на силу сопротивления влияют не только скорость автомобиля и его геометрические показатели. К примеру, чем выше плотность воздушного потока, тем больше сопротивление. В свою очередь плотность воздуха напрямую зависит от его температуры и высоты над уровнем моря. При повышении температуры плотность воздуха (следовательно, и его вязкость) увеличивается, а высоко в горах воздух более разрежен, и плотность его ниже, и так далее. Таких нюансов великое множество.

Но вернемся к форме автомобиля. Какой предмет обладает самой хорошей обтекаемостью? Ответ на этот вопрос известен практически любому школьнику (кто не спал на уроках физики). Падающая вниз капля воды приобретает форму, наиболее приемлемую с точки зрения аэродинамики. То есть округлая фронтальная поверхность и плавно сужающаяся длинная задняя часть (лучшее соотношение – длина в 6 раз больше ширины). Коэффициент сопротивления – величина экспериментальная. Численно он равен силе сопротивления воздуха в ньютонах, создаваемой при его движении со скоростью 1 м/с на 1 м2 лобовой площади. За единицу отсчета принято считать Cx плоской пластины = 1. Так вот, у капли воды Cx = 0,04. А теперь представьте себе автомобиль такой формы. Нонсенс, не правда ли? Мало того что такая штуковина на колесах будет смотреться несколько карикатурно, использовать этот автомобиль по назначению будет не очень удобно. Поэтому конструкторы вынуждены искать компромисс между аэродинамикой автомобиля и удобством его использования. Постоянные попытки снизить коэффициент воздушного сопротивления привели к тому, что у некоторых современных автомобилей Cx = 0,28-0,25. Ну а скоростные рекордные автомобили могут похвастаться Cx = 0,2-0,15.

Силы сопротивления

Теперь необходимо немного рассказать о свойствах воздуха. Как известно, любой газ состоит из молекул. Они находятся в постоянном движении и взаимодействии друг с другом. Возникают так называемые силы Ван-дер-Ваальса – силы взаимного притяжения молекул, препятствующие их перемещению друг относительно друга. Некоторые из них начинают сильнее прилипать к остальным. А с увеличением хаотического движения молекул возрастает и эффективность воздействия одного слоя воздуха на другой, растет вязкость. А происходит это за счет повышения температуры воздуха, причем это может быть вызвано как прямым нагревом от солнца, так и косвенным от трения воздуха о какую-либо поверхность или просто его слоев между собой. Вот тут как раз влияет скорость перемещения. Для того чтобы понять, как это отражается на автомобиле, достаточно попробовать взмахнуть рукой с открытой ладонью. Если делать это медленно, ничего не происходит, но если взмахнуть рукой сильнее, ладонь уже явно воспринимает некоторое сопротивление. Но это только одна составляющая.

Когда воздух двигается над некоторой неподвижной поверхностью (например, кузовом автомобиля), те же силы Ван-дер-Ваальса способствуют тому, что ближайший слой молекул начинает прилипать уже к ней. И этот "прилипший" слой тормозит уже следующий. И так слой за слоем, и тем быстрее движутся молекулы воздуха, чем дальше они находятся от неподвижной поверхности. В конце концов их скорость уравнивается со скоростью основного воздушного потока. Слой, в котором частички движутся замедленно, называется приграничным, и появляется он на любой поверхности. Чем больше значение поверхностной энергии у материала покрытия автомобиля, тем сильнее его поверхность взаимодействует на молекулярном уровне с окружающей воздушной средой и тем больше энергии необходимо затратить на разрушение этих сил. Теперь, опираясь на вышеописанные теоретические выкладки, можно сказать, что сопротивление воздуха – это не просто ветер, бьющий в лобовое стекло. У этого процесса больше составляющих.

Сопротивление формы

Это самая значительная часть – до 60% всех аэродинамических потерь. Часто она называется сопротивлением давления или лобовым сопротивлением. При движении автомобиль сжимает набегающий на него поток воздуха и преодолевает усилие на то, чтобы раздвинуть молекулы воздуха. В результате возникает зона повышенного давления. Далее воздух обтекает поверхность автомобиля. В процессе чего происходит срыв воздушных струй с образованием завихрений. Окончательный срыв воздушного потока в задней части автомобиля создает зону пониженного давления. Сопротивление спереди и всасывающий эффект сзади автомобиля создают очень серьезное противодействие. Этот факт обязывает дизайнеров и конструкторов искать пути по приданию кузову. Разложить по полкам.

Теперь необходимо рассмотреть форму автомобиля, что называется, "от бампера до бампера". Какие из деталей и элементов оказывают большее влияние на общую аэродинамику машины. Передняя часть кузова. Экспериментами в аэродинамической трубе было установлено, что для лучшей аэродинамики передняя часть кузова должна быть низкой, широкой и не иметь острых углов. В этом случае не происходит отрыва воздушного потока, что очень благотворно сказывается на обтекаемости автомобиля. Решетка радиатора – элемент зачастую не только функциональный, но и декоративный. Ведь радиатор и двигатель должны иметь эффективный обдув, поэтому этот элемент имеет очень большое значение. Некоторые автоконцерны изучают эргономику и распределение воздушных потоков в подкапотном пространстве столь же серьезно, как и общую аэродинамику автомобиля. Наклон ветрового стекла – очень яркий пример компромисса обтекаемости, эргономики и эксплуатационных качеств. Недостаточный его наклон создает излишнее сопротивление, а чрезмерный – увеличивает запыленность и массу самого стекла, в сумерках резко падает обзорность, требуется увеличить размеры стеклоочистителя и т. д. Переход от стекла к боковине должен осуществляться плавно.

Но нельзя увлекаться излишней кривизной стекла – это может увеличить искажения и ухудшить видимость. Влияние стойки ветрового стекла на аэродинамическое сопротивление очень сильно зависит от положения и формы ветрового стекла, а также от формы передка. Но, работая над формой стойки, нельзя забывать о защите передних боковых стекол от попадания дождевой воды и грязи, сдуваемой с ветрового стекла, поддержании приемлемого уровня внешнего аэродинамического шума и др. Крыша. Увеличение выпуклости крыши может привести к уменьшению коэффициента аэродинамического сопротивления. Но значительное увеличение выпуклости может конфликтовать с общим дизайном автомобиля. Кроме того, если увеличение выпуклости сопровождается одновременным увеличением площади лобового сопротивления, то сила сопротивления воздуха возрастает. А с другой стороны, если попытаться сохранить первоначальную высоту, то ветровое и заднее стекла должны будут внедряться в крыши, поскольку обзорность ухудшаться не должна. Это приведет к удорожанию стекол, уменьшение же силы сопротивления воздуха в этом случае не столь значительно.

Боковые поверхности. С точки зрения аэродинамики автомобиля боковые поверхности оказывают небольшое влияние на создание безвихревого потока. Но округлять их слишком нельзя. Иначе трудно будет забираться в такой автомобиль. Стекла должны по возможности составлять единое целое с боковой поверхностью и располагаться на одной линии с наружным контуром автомобиля. Любые ступеньки и перемычки создают дополнительные препятствия для прохождения воздуха, появляются нежелательные завихрения. Можно заметить, что водосточные желоба, которые ранее присутствовали практически на любом автомобиле, уже не используются. Появились иные конструктивные решения, не оказывающие столь большого влияния на аэродинамику автомобиля.

Задняя часть автомобиля оказывает, пожалуй, наибольшее влияние на коэффициент обтекаемости. Объясняется это просто. В задней части воздушный поток отрывается и образует завихрения. Заднюю часть автомобиля практически невозможно сделать такой же обтекаемой, как дирижабль (длина в 6 раз больше ширины). Поэтому над ее формой работают более тщательно. Один из основных параметров – угол наклона задней части автомобиля. Уже хрестоматийным стал пример российского автомобиля "Москвич-2141", где именно неудачное решение задней части значительно ухудшило общую аэродинамику автомобиля. Но, с другой стороны, заднее стекло "москвича" всегда оставалось чистым. Снова компромисс. Именно поэтому так много дополнительных навесных элементов делается именно на заднюю часть автомобиля: антикрылья, спойлеры и т. д. Наряду с углом наклона задней части на коэффициент аэродинамического сопротивления сильно влияет оформление и форма боковой кромки задней части автомобиля. Например, если посмотреть практически на любой современный автомобиль сверху, сразу видно, что кузов спереди шире, чем сзади. Это тоже аэродинамика. Днище автомобиля.

Как может показаться поначалу, эта часть кузова не может оказать влияния на аэродинамику. Но тут возникает такой аспект, как прижимная сила. От нее зависит устойчивость автомобиля и то, насколько правильно организован поток воздуха под днищем автомобиля, зависит в итоге сила его "прилипания" к дороге. То есть если воздух под автомобилем не задерживается, а протекает быстро, то возникающее там пониженное давление будет прижимать автомобиль к дорожному полотну. Особенно это важно для обычных автомобилей. Дело в том, что у гоночных машин, которые соревнуются на качественных, ровных покрытиях, можно установить настолько малый клиренс, что начнет проявляться эффект "земной подушки", при котором прижимная сила увеличивается, а лобовое сопротивление уменьшается. Для нормальных автомобилей низкий дорожный просвет неприемлем. Поэтому конструкторы в последнее время стараются как можно больше сгладить днище автомобиля, закрыть щитками такие неровные элементы, как выхлопные трубы, рычаги подвески и т. д. Кстати, колесные ниши оказывают очень большое влияние на аэродинамику автомобиля. Неправильно спроектированные ниши могут создавать дополнительную подъемную силу.

И снова ветер

Нет необходимости говорить о том, что от обтекаемости автомобиля зависит требуемая мощность двигателя, следовательно, и расход топлива (т. е. кошелек). Однако аэродинамика влияет не только на скорость и экономичность. Не последнее место занимают задачи по обеспечению хорошей курсовой устойчивости, управляемости автомобиля и снижения шумов при его движении. С шумами все ясно: чем лучше обтекаемость автомобиля, качество поверхностей, чем меньше величина зазоров и количество выступающих элементов и т. п., тем меньше шумы. Конструкторам приходится думать и о таком аспекте, как разворачивающий момент. Этот эффект хорошо известен большинству водителей. Кто хоть раз проезжал на большой скорости мимо "фуры" или просто ездил при сильном боковом ветре, должен был почувствовать появление крена или даже небольшое разворачивание автомобиля. Нет смысла объяснять этот эффект, но это именно проблема аэродинамики.

Вот почему коэффициент Cx не единственный. Ведь воздух может воздействовать на автомобиль не только "в лоб", но и под разными углами и в разных направлениях. И все это оказывает влияние на управляемость и безопасность. Это лишь несколько основных аспектов, влияющих на общую силу сопротивления воздуха. Просчитать все параметры невозможно. Существующие формулы не дают полной картины. Поэтому конструкторы исследуют аэродинамику автомобиля и корректируют его форму при помощи такого дорогого инструмента, как аэродинамическая труба. Западные фирмы не жалеют денег на их строительство. Стоимость таких исследовательских центров может исчисляться миллионами долларов. К примеру: концерн Daimler-Chrysler вложил $37,5 млн. в создание специализированного комплекса по совершенствованию аэродинамики своих автомобилей. В настоящее время аэродинамическая труба – наиболее значимый инструмент исследования сил сопротивления воздуха, влияющих на автомобиль.

Во многих областях науки и техники, которые связаны со скоростью, часто возникает необходимость расчета сил, действующих на объект. Современный автомобиль, истребитель, подводная лодка или скоростной электропоезд - все они испытывают на себе влияние аэродинамических сил. Точность определения величины этих сил напрямую влияет на технические характеристики указанных объектов и на их способность выполнять те или иные задачи. В общем случае силы трения определяют уровень мощности двигательной установки, а поперечные силы влияют на управляемость объекта.

При традиционной схеме проектирования для определения сил используются продувки в аэродинамических трубах (как правило, уменьшенных моделей), испытания в бассейнах и натурные испытания. Однако все экспериментальные исследования - это достаточно дорогой способ получения подобных знаний. Для того чтобы испытать модельное устройство, необходимо сначала его изготовить, затем составить программу испытаний, подготовить стенд и, наконец, провести серию замеров. При этом в большинстве случаев на достоверность результатов испытаний будут влиять допущения, вызванные отступлением от реальных условий эксплуатации объекта.

Эксперимент или расчет?

Рассмотрим более подробно причины несовпадения результатов экспериментов с реальным поведением объекта.

При исследовании моделей в условиях ограниченного пространства, например в аэродинамических трубах, граничные поверхности оказывают существенное влияние на структуру течения около объекта. Уменьшение масштаба модели позволяет решить данную проблему, однако при этом следует учитывать изменение числа Рейнольдса (так называемый масштабный эффект).

В отдельных случаях искажения могут быть вызваны принципиальным несоответствием реальных условий обтекания тела и моделируемых в трубе. Например, при продувке скоростных автомобилей или поездов отсутствие в аэродинамической трубе подвижной горизонтальной поверхности серьезным образом изменяет общую картину обтекания, а также влияет на баланс аэродинамических сил. Данный эффект связан с нарастанием пограничного слоя.

Способы измерения также вносят погрешности в измеряемые величины. Неправильная схема размещения датчиков на объекте или неверная ориентация их рабочих частей, может привести к получению некорректных результатов.

Ускорение проектирования

В настоящее время ведущие отраслевые компании на этапе эскизного проектирования широко используют технологии компьютерного моделирования CAE. Это позволяет рассмотреть большее количество вариантов при поиске оптимальной конструкции.

Современный уровень развития программного комплекса ANSYS CFX значительно расширяет область его применения: от моделирования ламинарных течений до турбулентных потоков с сильной анизотропией параметров.

Широкий набор используемых моделей турбулентности включает традиционные модели RANS (Reynolds Averaged Navie-Stoks), обладающие лучшим соотношением «скорость-точность», модель турбулентности SST (Shear Stress Transport) (двухслойная модель Ментера), удачно сочетающая в себе достоинства моделей турбулентности «k-e» и «k-w». Для потоков с развитой анизотропией больше подходят модели RSM (Reynolds Stress Model) типа. Прямой расчет параметров турбулентности по направлениям позволяет точнее определять характеристики вихревого движения потока.

В отдельных случаях рекомендуется применять модели, построенные на вихревых теориях: DES (Detachable Eddy Simulation) и LES (Large Eddy Simulation). Специально для случаев, где особенно важен учет процессов ламинарно-турбулентного перехода, разработана модель Transition Turbulence Model, созданная на основе хорошо зарекомендовавшей себя SST-технологии. Модель прошла обширную программу тестирования на различных объектах (от лопаточных машин до пассажирских самолетов) и показала прекрасную корреляцию с экспериментальными данными.

Авиация

Создание современных боевых и гражданских самолетов невозможно без глубокого анализа всех его характеристик еще на начальном этапе проектирования. От тщательной проработки формы несущих поверхностей и обводов напрямую зависит экономичность самолета, его скорость и маневренность.

Сегодня все крупные самолетостроительные компании в той или иной степени применяют компьютерный анализ при разработке новых изделий.

Большие возможности по анализу сложных течений открывает перед исследователями переходная модель турбулентности, которая корректно анализирует режимы течения, близкие к ламинарным, течения с развитыми зонами отрыва и присоединения потока. Это еще больше сокращает разницу между результатами численных расчетов и реальной картиной течения.

Автомобилестроение

Современный автомобиль должен обладать повышенной экономичностью при высокой эффективности использования мощности. И конечно, основными определяющими компонентами являются двигатель и кузов.

Для обеспечения эффективности всех систем двигателя ведущие западные компании уже давно используют технологии компьютерного моделирования. Например, компания Robert Bosch Gmbh (Германия), производитель широкого спектра узлов для современных дизельных автомобилей, при разработке системы подачи топлива Common Rail использовала ANSYS CFX (для усовершенствования характеристик впрыска).

Компания BMW, двигатели которой уже несколько лет подряд завоевывают звание «Лучший двигатель года» (International Engine of the Year), применяет ANSYS CFX для моделирования процессов в камерах сгорания ДВС.

Внешняя аэродинамика также является средством повышения эффективности использования мощности двигателя. Обычно речь идет не только о снижении коэффициента сопротивления, но и о балансе прижимной силы, необходимом любому скоростному автомобилю.

В качестве предельного выражения этих характеристик выступают гоночные автомобили различных классов. Все без исключения участники чемпионата F1 используют компьютерный анализ аэродинамики своих болидов. Спортивные достижения наглядным образом доказывают преимущества этих технологий, многие из которых уже применяются и при создании серийных автомобилей.

В России пионером в этой области является команда Active-Pro Racing: гоночный автомобиль класса «Формула-1600» развивает скорость свыше 250 км/ч и является вершиной российского кольцевого автоспорта. Использование комплекса ANSYS CFX (рис. 4) для проектирования нового аэродинамического оперения болида позволило значительно сократить количество вариантов конструкции при поиске оптимального решения.

Сравнение расчетных данных и результатов продувок в аэродинамической трубе показало ожидаемую разницу. Она объясняется неподвижным полом в трубе, который вызывал рост толщины пограничного слоя. Поэтому аэродинамические элементы, расположенные достаточно низко, работали в непривычных для себя условиях.

Однако компьютерная модель полностью соответствовала реальным условиям движения, что позволило значительно улучшить эффективность оперения болида.

Строительство

Сегодня архитекторы более свободно подходят к внешнему облику проектируемых зданий, чем 20 или 30 лет назад. Футуристические творения современных архитекторов, как правило, имеют сложные геометрические формы, для которых неизвестны значения аэродинамических коэффициентов (необходимых для назначения расчетных ветровых нагрузок на несущие конструкции).

В этом случае для получения аэродинамических характеристик здания (и силовых факторов воздействия), помимо традиционных испытаний в аэродинамических трубах, все чаще используются средства CAE. Пример такого расчета в ANSYS CFX показан на рис. 5.

Кроме того, ANSYS CFX традиционно используется для моделирования систем вентиляции и отопления производственных помещений, административных зданий, офисных и спортивно-развлекательных комплексов.

Для анализа температурного режима и характера воздушных потоков в помещении ледовой арены СК «Крылатское» (г. Москва) инженеры Olof Granlund Oy (Финляндия) использовали программный комплекс ANSYS CFX. Трибуны стадиона вмещают в себя около 10 тыс. зрителей, а тепловая нагрузка от них может составить более 1 МВт (из расчета 100-120 Вт/чел). Для сравнения: чтобы нагреть 1 л воды от 0 до 100 °С требуется чуть больше 4 кВт энергии.

Рис. 5. Распределение давления на поверхности сооружений

Подводя итоги

Как можно видеть, вычислительные технологии в аэродинамике достигли такого уровня, о котором мы могли только мечтать 10 лет назад. В то же время не стоит противопоставлять компьютерное моделирование экспериментальным исследованиям - гораздо лучше, если эти методы будут дополнять друг друга.

Комплекс ANSYS CFX позволяет инженерам решать и такие сложные задачи, как, например, определение деформаций конструкции при воздействии на нее аэродинамических нагрузок. Это способствует более корректной постановке многих задач как внутренней, так и внешней аэродинамики: от задач флаттера лопаточных машин до ветрового и волнового воздействия на морские сооружения.

Все расчетные возможности комплекса ANSYS CFX доступны и в среде ANSYS Workbench.

Действующий регламент разрешает командам тестирование в аэродинамической трубе моделей машин, не превышающих 60% масштаба. В интервью F1Racing бывший технический директор команды Renault Пэт Симондс рассказал об особенностях этой работы…

Пэт Симондс: «Сегодня все команды работают с моделями 50% или 60% масштаба, но так было не всегда. Первые аэродинамические тесты в 80-х проводились с макетами в 25% от реальной величины – большего не позволяли мощности аэродинамических труб в Университете Саутгемптона и Имперского Колледжа в Лондоне – только там была возможность установить модели на подвижную основу. Потом появились аэродинамические трубы, в которых можно было работать с моделями в 33% и 50%, а сейчас, из-за необходимости ограничения расходов, команды условились тестировать модели не более 60% при скорости воздушного потока не больше 50 метров в секунду.

При выборе масштаба модели команды исходят из возможностей имеющейся аэродинамической трубы. Для получения точных результатов габариты модели не должны превышать 5% части рабочей области трубы. Производство моделей меньшего масштаба стоит дешевле, но чем меньше модель, тем сложнее соблюсти необходимую точность. Как и во многих других вопросах разработки машин Формулы 1, здесь нужно искать оптимальный компромисс.

В прежние времена модели изготавливались из древесины произрастающего в Малайзии дерева Диера, имеющего малую плотность, сейчас используется оборудование для лазерной стереолитографии – луч инфракрасного лазера полимеризует композиционный материал, получая на выходе деталь с заданными характеристиками. Этот метод позволяет уже через несколько часов проверить эффективность новой инженерной идеи в аэродинамической трубе.

Чем точнее выполнена модель, тем более достоверна информация, полученная при её продувке. Здесь важна каждая мелочь, даже через выхлопные трубы поток газов должен проходить с той же скоростью, как и на реальной машине. Команды пытаются добиться предельно возможной для имеющегося оборудования точности при моделировании.

Многие годы вместо шин использовались их масштабные копии из нейлона или углепластика, серьёзного прогресса удалось добиться, когда компания Michelin изготовила точные уменьшенные копии своих гоночных шин. Модель машины оснащается множеством датчиков для измерения давления воздуха и системой, позволяющей менять баланс.

Модели, включая установленное на них измерительное оборудование, немногим уступают в стоимости реальным машинам – к примеру, они стоят дороже, чем реальные машины GP2. Это на самом деле ультрасложное решение. Базовый каркас с датчиками стоит около 800 тысяч долларов, он может использоваться несколько лет, но обычно команды имеют два комплекта, чтобы не останавливать работу.

Каждая доработка кузовных элементов или подвески приводит к необходимости изготовления новой версии обвеса, что обходится ещё в четверть миллиона. При этом работа самой аэродинамической трубы обходится примерно в тысячу долларов в час и требует присутствия 90 сотрудников. Серьёзные команды тратят на эти исследования около 18 миллионов долларов за сезон.

Затраты окупаются. Увеличение прижимной силы на 1% позволяет отыграть одну десятую секунды на реальной трассе. В условиях стабильного регламента инженеры примерно столько и отыгрывают в месяц, так что только в отделе моделирования каждая десятая обходится команде в полтора миллиона долларов».

Для чего нужна аэродинамика автомобилю, знают все. Чем обтекаемее его кузов, тем меньше сопротивление движению и расход топлива. Такой автомобиль не только сбережет ваши деньги, но и в окружающую среду выбросит меньше всякой дряни. Ответ простой, но далеко не полный. Специалисты по аэродинамике, доводя кузов новой модели, еще и:

  • рассчитывают распределение по осям подъемной силы, что очень важно с учетом немалых скоростей современных автомобилей,
  • обеспечивают доступ воздуха для охлаждения двигателя и тормозных механизмов,
  • продумывают места забора и выхода воздуха для системы вентиляции салона,
  • стремятся понизить уровень шумов в салоне,
  • оптимизируют форму деталей кузова для уменьшения загрязнения стекол, зеркал и светотехники.

Причем решение одной задачи зачастую противоречит выполнению другой. Например, снижение коэффициента лобового сопротивления улучшает обтекаемость, но одновременно ухудшает устойчивость автомобиля к порывам бокового ветра. Поэтому специалисты должны искать разумный компромисс.

Снижение лобового сопротивления

От чего зависит сила лобового сопротивления? Решающее влияние на нее оказывают два параметра – коэффициент аэродинамического сопротивления Сх и площадь поперечного сечения автомобиля (мидель). Уменьшить мидель можно, сделав кузов ниже и уже, но вряд ли на такой автомобиль найдется много покупателей. Поэтому основным направлением улучшения аэродинамики автомобиля является оптимизация обтекания кузова, другими словами – уменьшение Сх. Коэффициент аэродинамического сопротивления Сх – это безразмерная величина, которая определяется экспериментальным путем. Для современных автомобилей она лежит в пределах 0,26-0,38. В зарубежных источниках коэффициент аэродинамического сопротивления иногда обозначают Cd (drag coefficient – коэффициент сопротивления). Идеальной обтекаемостью обладает каплевидное тело, Сх которого равен 0,04. При движении оно плавно рассекает воздушные потоки, которые затем беспрепятственно, без разрывов, смыкаются в его «хвосте».

Иначе ведут себя воздушные массы при движении автомобиля. Здесь сопротивление воздуха складывается из трех составляющих:

  • внутреннего сопротивления при прохождении воздуха через подкапотное пространство и салон,
  • сопротивления трения воздушных потоков о внешние поверхности кузова и
  • сопротивления формы.

Третья составляющая оказывает наибольшее влияние на аэродинамику автомобиля. Двигаясь, автомобиль сжимает находящиеся перед ним воздушные массы, создавая область повышенного давления. Потоки воздуха обтекают кузов, а там, где он заканчивается, происходит отрыв воздушного потока, создаются завихрения и область пониженного давления. Таким образом, область высокого давления спереди мешает автомобилю двигаться вперед, а область пониженного давления сзади «засасывает» его назад. Сила завихрений и величина области пониженного давления определяется формой задней части кузова.

Наилучшие показатели обтекаемости демонстрируют автомобили со ступенчатой формой задней части – седаны и купе. Объяснение простое – сорвавшийся с крыши поток воздуха тут же попадает на крышку багажника, где нормализуется и затем окончательно срывается с его кромки. Боковые потоки тоже попадают на багажник, который не дает возникать вредным вихрям за автомобилем. Поэтому чем выше и длиннее крышка багажника, тем лучше аэродинамические показатели. На больших седанах и купе иногда даже удается достичь безотрывного обтекания кузова. Небольшое сужение задней части также помогает снизить Сх. Кромку багажника делают острой или в виде небольшого выступа – это обеспечивает отрыв воздушного потока без завихрений. В результате область разряжения за автомобилем получается небольшой.

Днище автомобиля также оказывает влияние на его аэродинамику. Выступающие детали подвески и выхлопной системы увеличивают сопротивление. Для его уменьшения стараются максимально сгладить днище или прикрыть щитками все, что «торчит» ниже бампера. Иногда устанавливают небольшой передний спойлер. Спойлер снижает поток воздуха под автомобилем. Но тут важно знать меру. Большой спойлер существенно увеличит сопротивление, но зато автомобиль будет лучше «прижиматься» к дороге. Но об этом – в следующем разделе.

Прижимная сила


При движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.


Для спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

Практическая аэродинамика

Выполнение нескольких несложных правил позволит вам получить экономию из воздуха, снизив расход топлива. Однако эти советы будут полезны только тем, кто часто и много ездит по трассе.

При движении значительная часть мощности двигателя тратится на преодоление сопротивления воздуха. Чем выше скорость, тем выше и сопротивление (а значит и расход топлива). Поэтому если вы снизите скорость даже на 10 км/ч, сэкономите до 1 л на 100 км. При этом потеря времени будет несущественной. Впрочем, эта истина известна большинству водителей. А вот другие «аэродинамические» тонкости известны далеко не всем.

Расход топлива зависит от коэффициента лобового сопротивления и площади поперечного сечения автомобиля. Если вы думаете, что эти параметры заложены на заводе, и автовладельцу изменить их не под силу, то вы ошибаетесь! Изменить их совсем несложно, причем можно добиться как положительного, так и отрицательного эффекта.

Что увеличивает расход? Непомерно «съедает» топливо груз на крыше. И даже бокс обтекаемой формы будет отнимать не менее литра на сотню. Нерационально сжигают топливо открытые во время движения окна и люк. Если перевозите длинномерный груз с приоткрытым багажником - тоже получите перерасход. Различные декоративные элементы типа обтекателя на капоте («мухобойки»), «кенгурятника», антикрыла и других элементов доморощенного тюнинга хоть и принесут эстетическое наслаждение, но заставят вас дополнительно раскошелиться. Загляните под днище - за все, что провисает и выглядывает ниже линии порога, придется доплачивать. Даже такая мелочь, как отсутствие пластиковых колпаков на стальных дисках, повышает расход. Каждый перечисленный фактор или деталь по отдельности увеличивают расход не на много - от 50 до 500 г на 100 км. Но если все суммировать, «набежит» опять же около литра на сотню. Эти расчеты справедливы для малолитражных автомобилей при скорости 90 км/ч. Владельцы больших автомобилей и любители блльших скоростей делайте поправку в сторону увеличения расхода.

Если выполнить все вышеперечисленные условия, мы сможем избежать излишних трат. А можно ли еще снизить потери? Можно! Но это потребует проведения небольшого внешнего тюнинга (речь идет, конечно, о профессионально выполненных элементах). Передний аэродинамический обвес не дает воздушному потоку «врываться» под днище автомобиля, накладки порогов прикрывают выступающую часть колес, спойлер препятствует образованию завихрений за «кормой» автомобиля. Хотя спойлер, как правило, уже включен в конструкцию кузова современного автомобиля.

Так что получать экономию из воздуха – вполне реально.

Вступление.


Добрый день, дорогие читатели. В данном посте я хочу рассказать, как посредствам внутреннего анализа во Flow simulation выполнить внешний анализ детали или конструкции на определения коэффициента аэродинамического сопротивления и результирующей силы. Так же рассмотреть создание локальной сетки и задание целей "цель-выражение" для упрощения и автоматизации расчетов. Приведу основные понятия по коэффициенту аэродинамического сопротивления. Все эти сведения помогут быстро и грамотно спроектировать бедующее изделия и в дальнейшем распечатать его для практического использования.

Матчасть.

Коэффициент аэродинамического сопротивления (далее КАС) определяется экспериментально при испытаниях в аэродинамической трубе или испытаниях при движении накатом. Определение КАС приходит с формулой 1

формула 1

КАС разных форм колеблется в широком диапазоне. Рисунок 1 показывает эти коэффициенты для ряда форм. В каждом случае предполагается, что воздух, набегающий на тело, не имеет боковой компоненты (то есть движется прямо вдоль продольной оси транспортного средства). Обратите внимание, что простая плоская пластина имеет коэффициент аэродинамического сопротивления 1.95. Этот коэффициент означает, что сила лобового сопротивления в 1.95 раза больше, чем динамическое давление, действующее на площадь пластины. Крайне большое сопротивление, создаваемое пластиной, связано с тем, что воздух, растекающийся вокруг пластины, создаёт область отрыва гораздо большую, чем сама пластина.

Рисунок 1.

В жизни в дополнение к составляющей ветра, вытекающей из скорости движения автомобиля, учитывают скрость находящего ветра на автомобиль. И того для определения скорости потока верно следующее утверждение V=Vавто+Vветра.
Если находящий ветер является попутным то скорость вычитается.
Коэффициент аэродинамического сопротивления нужен для определения аэродинамического сопротивления, но в данной статье будет рассматриваться только сам коэффициент.

Исходные данные.


Расчет выполнялся в Solidworks 2016, модуль Flow simulation (далее FS). В качестве исходных данных были взяты следующие параметры: скорость вытекающая из скорости движения автомобиля V=40 м/с, температура окружающей среды плюс 20 градусов Цельсия, плотность воздуха 1,204 кг/м3. Геометрическая модель автомобиля представлена упрощенно (см. рисунок 2).

Рисунок 2.

Шаги задания начальных и граничных условий во Flow simulation.

Процесс добавления модуля FS и общий принцип формирования задания на расчет описан в этой , я же опишу характерные особенности для внешнего анализа посредствам внутреннего.

1.На первом шаге добавляем модель в рабочее пространство.

Рисунок 2.

2. Далее моделируем аэродинамическую камеру прямоугольного сечения. Главная особенность при моделирование это отсутствие торцов, иначе мы не сможем задать граничные условия. Модель автомобиля должна находится в центре. Ширина трубы должна соответствовать 1,5* ширины модели в обе стороны, длина трубы 1,5*длины модели, от задней части модели и 2*длины автомобиля от бампера, высота трубы 1,5*высоты машины от плоскости на которой стоит машина.

Рисунок 3.

3. Входим в модуль FS. Задаём граничные условия на первой грани входной поток.

Рисунок 4.

Выбираем тип: расход/скорость->скорость на входе. Задаём нашу скорость. Выбираем параллельную грань к передней части авто. Нажимаем галочку.

Рисунок 5.

Задаём граничное условие на выходе. Выбираем тип: давление, всё оставляем по умолчанию. Жмём галку.

Итак, граничные условия заданы переходим к заданию на расчёт.

4. Нажимаем на мастер проекта и следуем инструкции по рисункам ниже.

Рисунок 6.

Рисунок 7.

Рисунок 8.

Рисунок 9.

Рисунок 10.

Рисунок 11.

В пункте завершение оставляем всё без изменений. Нажимаем завершить.

5. На этом шаге займёмся управлением и созданием локальной сетки. Нажимаем на дереве элементов FS на пункт: сетка, правой кнопкой мыши и выбираем: добавить локальную сетку.

Рисунок 12.

Рисунок 13.

Здесь можно указать параметры и область локальной сетки, для сложных моделей так же задаётся угол кривизны и минимальный размер элемента. Минимальный размер задаётся в графе "закрытие узкие щели". Данная функция существенно сокращает время расчета и увеличивает точность полученных данных. В зависимости от того, насколько точно вы хотите получить результаты, выставляется параметр дробление сетки. Для внутреннего анализа вполне подходят стандартные настройки. Далее будет показана визуализация сетки на поверхности.

6.Перед тем как запустить расчет нужно задать цели расчета. Цели задаются в дереве FS цели. В начале задаём глобальные цели, выбираем силы по каждой компоненте.

Рисунок 14.


После нам нужно задать "цели-выражения". Для этого щелкаем правой кнопкой мыши в дереве FS на цели и выбираем "цель выражение". Для начала зададим уравнения для результирующей силы.

Рисунок 15.


Что бы компанента по силе использовалась в выражение нужно щёлкнуть на неё левой кнопкой мыши, ссылка на компоненту появится в формуле. Здесь вводим формулу 2. Нажимаем на галку.

Формула 2.

Создаём вторую "цель-выражение", записываем туда формулу 1.

Рисунок 16.

КАС расчтывается для лобового стекла. В данной модели лобовое стекло это наклонная грань, грань наклонена на 155 градусов, поэтому сила по X умножается на sin(155*(пи/180)). Нужно помнить, что расчет ведётся по системе си и соответственно площадь наклонной грани должна измеряться в метрах квадратных.

7. Теперь можно приступить к расчету, запускаем расчет.

Рисунок 17.

При запуске расчета программа предоставляет выбор на чем производить расчет, мы можем выбрать количество ядер участвующие в расчете и рабочие станции.

Рисунок 18.

Так как задача не сложная расчет проходит меньше чем за минуту, поэтому мы нажмём на паузу после его запуска.

Рисунок 19.

Теперь нажимаем на кнопку "вставить график", выбираем наши цели выражения.

Рисунок 20.

На графике будут показаны значения для наших выражений для каждой итерации.

Для наблюдения происходящего процесса во время расчета можно использовать "предварительный просмотр". При включении предварительного просмотра время нашего расчета увеличивается, а смысла от него мало, поэтому я не советую включать данную опцию, но покажу как это выглядит.

Рисунок 21.

Рисунок 22.

То что эпюра перевёрнута нет ни чего страшного, это зависит от ориентации модели.

Расчёт заканчивается когда все цели сошлись.

Рисунок 23.

Результаты должны загрузиться автоматически, если этого не произошло догрузите вручную: инструменты->FS->результаты->загрузить из файла

8. После расчета можно посмотреть сетку на модели.