Передаточные ремни. Что такое ременная (клиноременная) передача? Достоинства ременных передач

Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

В зависимости от вида передаваемой энергии передачи делятся на механические, электрические, гидравлические, пневматические и т.п. В курсе деталей машин изучаются, в основном, механические передачи.

Механической передачей называют устройство (механизм, агре­гат), предназначенное для передачи энергии механического движения, как правило, с преобразованием его кинематических и силовых параметров, а иногда и самого вида движения.

Наибольшее распространение в технике получили передачи вращательного движения, которым в курсе деталей машин уделено основное внимание (далее под термином передача подразумевается, если это не оговорено особо, именно передача вращательного движения).

Классификация механических передач вращательного движения:

1. По способу передачи движения от входного вала к выходному:

1.1. Передачи зацеплением:

1.1.1. с непосредственным контактом тел вращения - зубчатые, червячные, винтовые;

1.1.2. с гибкой связью - цепные, зубчато-ременные.

1.2. Фрикционные передачи:

1.2.1. с непосредственным контактом тел вращения – фрикционные;

1.2.2. с гибкой связью - ременные.

2. По взаимному расположению валов в пространстве:

2.1. с параллельными осями валов - зубчатые с цилиндрическими колесами, фрикционные с цилиндрическими роликами, цепные;

2.2. с пересекающимися осями валов - зубчатые и фрикционные конические, фрикционные лобовые;

2.3. с перекрещивающимися осями - зубчатые - винтовые и коноидные, червячные, лобовые фрикционные со смещением ролика.

3. По характеру изменения угловой скорости выходного вала по отношению к входному: редуцирующие (понижающие) и мультиплици­рующие (повышающие).

4. По характеру изменения передаточного отношения (числа): передачи с постоянным (неизменным) передаточным отношением и передачи с переменным (изменяемым или по величине, или по направлению или и то и другое вместе) передаточным отношением.

5. По подвижности осей и валов: передачи с неподвижными осями валов - рядовые (коробки скоростей, редукторы), передачи с подвижными осями валов (планетарные передачи, вариаторы с поворотными роликами).

6. По количеству ступеней преобразования движения: одно-, двух-, трех-, и многоступенчатые.

7. По конструктивному оформлению: закрытые и открытые (безкорпусные).

Главными характеристиками передачи, необходимыми для ее расчета и проектирования, являются мощности и скорости вращения на входном и выходном валах - P вх , P вых , w вх , w вых . В технических расчетах вместо угловых скоростей обычно используются частоты вращения валов - n вх и n вых . Соотношение между частотой вращения n (общепринятая размерность 1/мин) и угловой скоростью w (размерность в системе SI 1/с) выражается следующим образом:



Отношение мощности на выходном валу передачи P вых (полезной мощности) к мощности P вх, подведенной к входному валу (затраченной), принято называть коэффициентом полезного действия (КПД):

Отношение потерянной в механизме (машине) мощности (P вх - P вых) к ее входной мощности называют коэффициентом потерь, который можно выразить следующим образом:

Следовательно сумма коэффициентов полезного действия и потерь всегда равна единице:

Для многоступенчатой передачи, включающей k последовательно соединенных ступеней, общий КПД равен произведению КПД отдельных ступеней:

Следовательно КПД машины, содержащей ряд последовательных передач, всегда будет меньше КПД любой из этих передач.

Силовые показатели передачи определяются по известным из теории механизмов и машин (ТММ) формулам:

усилие, действующее по линии движения на поступательно движу­щейся детали (например, на ползуне кривошипно-ползунного механизма) F=P/v , где P - мощность, подведенная к этой детали, а v - ее скорость;

аналогично, момент, действующий на каком-либо из валов передачи (редуктора, коробки передач, трансмиссии), T=P/w , где P - мощность, подведенная к этому валу, а w - скорость его вращения. Используя соотношение (2.1), получаем формулу, связывающую момент, мощность и частоту вращения:

Окружная (касательная) скорость в любой точке вращающегося элемента (колеса, шкива, вала), лежащей на диаметре D этого элемента будет равна:

При этом тангенциальную (окружную или касательную) силу можно вычислить по следующей формуле:

Передаточное отношение - это отношение скорости входного звена к скорости выходного звена, что для вращательного движения выразится сле­дующим образом:

где верхний знак (плюс) соответствует одинаковому направлению вращения входного и выходного звеньев (валов), а нижний - встречному.

Однако в технических расчетах (особенно прочностных) направление вращения чаще всего не имеет решающего значения, поскольку оно не определяет нагрузки, действующие в передаче. В таких расчетах используется передаточное число, которое представляет собой абсолютную величину передаточного отношения:

В многоступенчатой передаче с последовательным расположением k ступеней (что чаще всего наблюдается в технике) передаточное число и передаточное отношение определяются следующими выражениями:

Среди множества разнообразных передач вращательного движения достаточно простыми конструктивно (по устройству) являются передачи с гибкой связью, принцип работы которых строится на использовании сил трения или зубчатого зацепления - это ременные передачи.

Ременная передача (рис. 2.1) состоит из двух или большего числа шкивов, насаженных на валы, участвующие в передаче вращательного движе­ния, и гибкой связи, называемой ремнем, которая охватывает шкивы с целью передачи движения от ведущего шкива ведомому (или ведомым) и взаимодействует с ними посредством сил трения или зубчатого зацепления.

Основную часть лекции посвятим фрикционным ременным передачам, поэтому далее под термином ременная передача, если это не будет оговорено особо, будем понимать именно фрикционную передачу.

Ременные передачи трением – наиболее старый и простой по конструкции вид передачи. Эти передачи и в настоящее время находят достаточно широкое применение, они широко применяются на быстроходных ступенях привода (передача вращения от электродвигателей к последующим механизмам). В двигателях внутреннего сгорания МГКМ ременные передачи применяются для привода вспомогательных агрегатов (вентилятор, насос системы водяного охлаждения, электрический генератор), а зубчатоременная передача применяется в некоторых автомобильных двигателях для привода газораспределительного механизма.

Достоинства ременных передач: 1. Простота конструкции и низкая стоимость. 2. Возможность передачи движения на достаточно большие расстояния (до 15 м). 3. Возможность работы с большими скоростями вращения шкивов. 4. Плавность и малошумность работы. 5. Смягчение крутильных вибраций и толчков за счет упругой податливости ремня. 6. Предохранение механизмов от перегрузки за счет буксования ремня при чрезмерных нагрузках.

Недостатки ременных передач: 1. Относительно большие габариты. 2. Малая долговечность ремней. 3. Большие поперечные нагрузки, передаваемые на валы и их подшипники. 4. Непостоянство передаточного числа за счет проскальзывания ремня. 5. Высокая чувствительность передачи к попаданию жидкостей (воды, топлива, масла) на поверхности трения.

Классификация ременных передач:

1. По форме поперечного сечения ремня: плоскоременные (попе­речное сечение ремня имеет форму плоского вытянутого прямоугольника, рис. 2.1.а); клиноременные (поперечное сечение ремня в форме трапеции рис. 2.1.б); поликлиноременные (ремень снаружи имеет плоскую поверхность, а внутренняя, взаимодействующая со шкивами, поверхность ремня снабжена продольными гребнями, выполненными в поперечном сечении в форме трапеции рис. 2.1.г); круглоременные (поперечное сечение ремня имеет форму круга рис. 2.1.в); зубчатоременная (внутренняя, контактирующая со шкивами, поверхность плоского ремня снабжена поперечными выступами, входящими в процессе работы передачи в соответствующие впадины шкивов).

2. По взаимному расположению валов и ремня: с параллельными геометрическими осями валов и ремнем, охватывающим шкивы в одном направлении – открытая передача (шкивы вращаются в одном направлении); с параллельными валами и ремнем, охватывающим шкивы в противоположных направлениях – перекрестная передача (шкивы вращаются во встречных направлениях); оси валов перекрещиваются под некоторым углом (чаще всего 90°) – полуперекрестная передача.

3. По числу и виду шкивов, применяемых в передаче: с одношкивными валами; с двушкивным валом, один из шкивов которого холостой; с валами, несущими ступенчатые шкивы для изменения передаточного числа (для ступенчатой регулировки скорости ведомого вала).

4. По количеству валов, охватываемых одним ремнем: двухвальная , трех -, четырех - и многовальная передача.

5. По наличию вспомогательных роликов: без вспомогательных роликов, с натяжными роликами; с направляющими роликами.

Рис. 2.2. Геометрия открытой ременной передачи.

Геометрические соотношения в ременной передаче рассмотрим на примере открытой плоскоременной передачи (рис. 2.2). Межосевое расстояние а – это расстояние между геометрическими осями валов, на которых установлены шкивы с диаметрами D 1 (он, как правило, является ведущим) и D 2 (ведомый шкив). При расчетах клиноременных передач для ведущего и ведомого шкивов используются расчетные диаметры d р1 и d р2 . Угол между ветвями охватывающего шкивы ремня - 2g , а угол охвата ремнем малого (ведущего) шкива (угол, на котором ремень касается поверхности шкива) a 1 . Как видно из чертежа (рис. 2.2) половинный угол между ветвями составит

а так как этот угол обычно невелик, то во многих расчетах допустимым является приближение g » sing , то есть

Используя это допущение угол охвата ремнем малого шкива можно представить в следующем виде

в радианной мере, или

в градусах.

Длину ремня при известных названных выше параметрах передачи можно подсчитать по формуле

Однако, весьма часто ремни изготавливаются в виде замкнутого кольца известной (стандартной) длины. В этом случае возникает необходимость уточнять межосевое расстояние по заданной длине ремня

С целью обеспечения стабильности работы передачи обычно принимают

для плоского ремня ,

а для клинового – ,

где h p – высота поперечного сечения ремня (толщина ремня).

В процессе работы передачи ремень обегает ведущий и ведомый шкивы, чем короче ремень (чем меньше L p ) и чем быстрее он движется (чем больше его скорость V p ), тем чаще происходит контактирование его рабочей поверхности с поверхностью шкивов и тем интенсивнее он изнашивается. Поэтому отношение V p / L p (его размерность в системе СИ – с -1) характеризует долговечность ремня в заданных условиях его работы – чем больше величина этого отношения, тем ниже при прочих равных условиях долговечность ремня. Обычно принимают

для плоских ремней V p / L p = (3…5) с -1 ,

для клиновых - V p / L p = (20…30) с -1 .

Силовые соотношения в ременной передаче. Необходимым условием нормальной работы любой фрикционной передачи, включая ременные, является наличие сил нормального давления между поверхностями трения. В ременной передаче такие силы возможно создать только за счет предварительного натяжения ремня. При неработающей передаче силы натяжения обеих ветвей будут одинаковыми (обозначим их F 0 , как на рис 2.3.а). В процессе работы передачи набегающая на этот шкив ветвь ремня за счет трения ведущего шкива о ремень получает дополнительное натяжение (обозначим силу натяжения этой ветви F 1 ), в то время как вторая, сбегающая с ведущего шкива, ветвь ремня несколько ослабляется (её силу натяжения обозначим F 2 , см. рис. 2.3.б). Тогда, очевидно, окружное усилие, передающее рабочую нагрузку , но с другой стороны, как и для всякой передачи вращения (см. (2.8)), а для поступательно движущихся ветвей ремня можно записать , где P – мощность передачи, а V p средняя скорость движения ремня. Суммарное натяжение ветвей ремня остается неизменным, как в работающей, так и в неработающей передаче, то есть . Но по формуле Эйлера для ремня, охватывающего шкив, , где – основание натурального логарифма (e » 2,7183), f – коэффициент трения покоя (коэффициент сцепления) между материалами ремня и шкива (табл. 2.1), a – угол охвата ремнем шкива (определен выше).

С учетом высказанных соображений и используя известные соотношения нетрудно получить зависимость для вычисления оптимальной величины сил предварительного натяжения ремня

а из последнего, выражая тяговое усилие на ведущем шкиве в соответствии с (2.8), получим

где индексы «1 » указывают на параметры, относящиеся к ведущему шкиву передачи. Если величину предварительного натяжения ремня сделать меньшей по сравнению с представленным в выражении (2.19), то произойдет буксование (проскальзывание) ремня, и переданная на выходной вал мощность уменьшится до величины, соответствующей фактическому значению силы предварительного натяжения. Если же силы предварительного натяжения ветвей будут больше оптимальной величины, необходимой для передачи заданной мощности, то возрастёт относительная доля мощности, затраченная на упругое скольжение ремня по шкивам, что также приведет к снижению мощности на выходном валу передачи, то есть к уменьшению её КПД.

Аналогично, сила натяжения веду­щей ветви составит

Отношение разности сил натяжения в ветвях ремня работающей передачи к сумме этих сил называется коэффициентом тяги (j) .

Таблица 2.1 Коэффициенты сцепления и коэффициент тяги для некоторых материалов ремней по стальному шкиву.

Коэффициент тяги характеризует качество работы передачи. Его оптимальное значение нетрудно найти, используя выражение (2.18),

Как видно из последнего выражения оптимальная величина коэффициента тяги не зависит ни от передаваемой мощности, ни от предварительного натяжения ремня, а только лишь от свойств фрикционной пары материалов, из которых изготовлены ремень и шкив, и от конструктивных параметров передачи . Численные значения j 0 для ремней из различ­ных материалов и угла охвата ремнем сталь­ного ведущего шкива, равного 180°, пред­ставлены в табл. 2.1.

Кинематика ременной передачи. Как показано выше сила натяжения ведущей ветви ремня существенно превышает силу натяжения свободной ветви (F 1 >F 2 ). Отсюда следует, что удлинение каждого отдельно взятого элемента ремня меняется в зависимости от того, на какую его ветвь этот элемент в данный момент времени попадает. Изменение этой элементарной части ремня может происходить только в процессе ее движения по шкивам. При этом, проходя по ведущему шкиву (при переходе с ведущей ветви на свободную), эта элементарная часть укорачивается, а при движении по ведомому шкиву (переходя со свободной ветви ремня на его ведущую ветвь) – удлиняется. Изменение длины части ремня, соприкасающейся с поверхностью шкива, возможно только с её частичным проскальзыванием. Изложенные соображения позволяют сформулировать два важнейших следствия неодинаковой загрузки ведущей и холостой ветвей ремня:

Работа ременной передачи без скольжения ремня по рабочей поверхности шкивов невозможна.

Скорости движения ведущей и свободной ветвей ремня различны, а следовательно различны и скорости рабочих поверхностей ведущего и ведомого шкивов.

Окружная скорость рабочей поверхности ведущего шкива всегда больше окружной скорости ведомого шкива (V 1 > V 2 ).

Отношение разности между окружными скоростями на рабочей поверхности ведущего и ведомого шкивов к скорости ведущего шкиве называют коэффициентом скольжения передачи (x).

где индекс «1 » соответствует ведущему, а индекс «2 » - ведомому шкивам.

Выражая в (2.23) линейные (тангенциальные) скорости рабочих поверхностей шкивов через угловую скорость и их радиус, нетрудно получить выражение, определяющее передаточное число ременной передачи через ее конструктивные параметры:

1 зона, где 0 £ j £ j 0 , эту область называют зоной упругого скольжения ;

2 зона, где j 0 £ j £ j max , её называют зоной частичного буксования ;

3 зона, где j > j max , эту область называют зоной полного буксования .

В зоне упругого скольжения коэффициент скольжения растет линейно с увеличением коэффициента тяги, одновременно возрастает и КПД передачи, достигая максимального значения при оптимальной величине коэффициента тяги j 0 . Дальнейшее увеличение коэффициента тяги приводит к частичному буксованию ремня, коэффициент скольжения растет нелинейно и намного интенсивнее по сравнению с 1 зоной, а КПД также нелинейно и интенсивно снижается. При достижении коэффициентом тяги величины j max наступает полное буксование передачи (ведомый шкив останавливается), величина скольжения становится равной единице, а КПД падает до нулевого значения.

Представленный выше анализ показывает, что наиболее благоприятной для работы передачи является область коэффициентов тяги, прилегающая к его оптимальному значению, поскольку именно в этой области передача обладает максимальным КПД. При этом величина упругого скольжения для разных типов ремней лежит в пределах 1…2%, а КПД для передачи плоским ремнем можно принять равным 0,95…0,97, клиновым или поликлиновым – 0,92…0,96.

Напряжения в ремне. Напряжения, возникающие в ведущей ветви ремня от действия рабочих нагрузок, нетрудно определить, разделив (2.20) на площадь поперечного сечения ремня A р ,

Кроме рабочих напряжений, обусловленных предварительным натяжением ремня и тяговым усилием, участвующем в передаче мощности от ведущего шкива к ведомому, в ремне возникают еще два вида дополнительных напряжений – изгибные и центробежные.

Изгибные напряжения возникают при изгибе ремня в момент огибания им шкивов, при этом наибольшая величина изгибных напряжений соответствует меньшему радиусу изгиба, то есть максимальные напряжения изгиба возникают в ремне при обегании меньшего (чаще всего являющегося ведущим) шкива. Учитывая последнее, на основе формул сопротивления мате­риалов получаем

где E – модуль упругости материала ремня (см. табл. 2.3), y 0 – расстояние от нейтрального слоя до наружного (растянутого) волокна ремня, D 1 – диаметр наименьшего шкива передачи. Принимая для плоского рем­ня y 0 = d / 2 , где d - толщина ремня, а для клинового - y 0 = (0,25…0,38)h , где h – толщина ремня, получаем:

для плоского ремня

а для клинового ремня

Таким образом, напряжения изгиба пропорциональны толщине ремня и обратнопропорциональны диаметру наименьшего из шкивов, работающих в передаче.

Часть ремня, прилегающая к шкиву участвует в круговом движении, что обусловливает действие на неё центробежных сил, вызывающих в ремне растягивающие напряжения. Напряжения от центробежных сил можно вычислить по простому соотношению

где r - средняя плотность материала ремня, а V р – средняя скорость движения ремня, обегающего шкив.

выражая скорость ремня через частоту вращения и диаметр наименьшего шкива, получим

Как видим, напряжения, вызванные в ремне действием центробежных сил, квадратично зависят как от частоты вращения наименьшего шкива, так и от его диаметра.

На внешней стороне ремня все три вида названных напряжений являются растягивающими и потому суммируются. Таким образом, максимальные растягивающие напряжения в ремне

Анализ реальных передач показывает, что напряжения от изгиба s и и от действия центробежных сил s ц обычно сравнимы и часто даже превосходят по величине напряжения от рабочей нагрузки s р . При этом следует учитывать, что увеличение s и не способствует повышению тяговой способности передачи, с другой стороны, эти напряжения, периодически меняясь, являются главной причиной усталостного износа ремней .

Расчет ременных передач основан на общей теории ременных передач и экспериментальных данных. При этом формула Эйлера и зависимость (2.31) непосредственно не используются, а влияние дополнительных напряжений s и и s ц на долговечность передачи учитывают при выборе её геометрических параметров (a , D 1 , a и др.) и допускаемых напряжений 0 и , используемых в расчете.

При проектном расчете диаметр малого шкива D 1 можно оценить по модифицированной формуле М.А. Саверина

где вращающий момент T 1 в Нм , диаметр малого шкива D 1 в мм , а эмпирический коэффициент K D для различных типов передач представлен в табл. 2.4. Получен­ный расчетом диаметр малого шкива увеличивается до ближайшего большего стандартного ли­нейного размера.

где F t – окружная сила, передаваемая ремнем, Н; s Ft – расчетное полезное напряжение, МПа; b и d - ширина и толщина ремня, мм. При этом допускаемое полезное напряжение определяется исходя из опытных данных, полученных при стандартном испытании ремня, с введением поправок на пространственное расположение передачи, угол обхвата на малом шкиве и скорость движения ремня (уменьшение сцепления центробежными силами), на режим работы передачи.

Обычно такой расчет предполагает минимальный срок службы передачи (ремня) 2000 ч. Однако, экспериментально установлено, что для ремней не удается установить предел неограниченной выносливости, а ресурс ремня, выраженный числом пробегов за срок службыN , связан с наибольшим напряжением, вычисленным по зависимости (2.31), соотношением

Вводя в рассмотрение число пробегов ремня в секунду при постоянном режиме нагружения и u » 1 (a = 180° ), нетрудно получить выражение для определения срока службы ремня T 0 в часах работы

где z ш – число шкивов, огибаемых ремнем. Формулы (2.34) и (2.35) получены при диаметре малого шкива D 1 = 200 мм , u » 1 (угол охвата малого шкива a = 180° ) и s 0 = 1,2 МПа. Опытные значения коэффициентов C и m для некоторых типов ремней представлены в табл. 2.5.

Особенности конструкции, работы и расчета клиноременных и поликлиноременных передач. Клиновые ремни имеют трапециевидное поперечное сечение, а поликлиновые – выполненную в форме сочленённых основаниями клиньев рабочую часть (рис. 2.5). Угол клина для обоих видов ремней одинаков и составляет 40°. На шкивах такой передачи выполняются соответствующие сечению рабочей части ремня канавки, называемые ручьями. Профили ремней и ручьёв шкивов контактируют только боковыми (рабочими) поверхностями (рис. 2.6). В клиноременных передачах для снижения изгибных напряжений часто применяют комплект из нескольких ремней (2…6), работающих параллельно на одной паре шкивов. размеры сечений клиновых ремней стандартизованы (ГОСТ 1284.1-89, ГОСТ 1284.2-89, ГОСТ 1284.3-89). Стандартом предусмотрено 7 ремней нормального сечения (Z, A, B, C, D, E, E0), у которых b 0 /h»1,6 , и 4 – узкого сечения (YZ, YA, YB, YC), у которых b 0 /h»1,25 . Ремни изготавливаются в виде замкнутого кольца, поэтому их длина тоже стандартизована.

таким образом, ремень со шкивом образуют клиновую кинематическую пару, для которой приведенный коэффициент трения f* выражается зависимостью

где f – коэффициент трения между контактирующими поверхностями ремня и шкива, а j - угол между боковыми рабочими поверхностями ремня. После подстановки в (2.36) фактического значения угла j получаем, что f*=2,92 f , то есть при одном и том же диаметре ведущего шкива несущая способность клиноременной передачи будет примерно втрое выше по сравнению с плоскоременной. Поэтому, если в плоскоременных передачах рекомендуют угол охвата меньшего шкива a ³ 150° , то в клиноременных - a ³ 120° и допускается даже a = 75…80° . Последнее обстоятельство позволяет использовать 1 ремень для передачи вращательного движения от одного ведущего нескольким ведомым шкивам (например, в автомобильных ДВС используется ременный привод одним ремнем водяной помпы в системе охлаждения, электрогенератора и вентилятора).

Проектный расчет клиноременных передач выполняется достаточно просто методом подбора, поскольку в стандартах указывается мощность, передаваемая одним ремнем при определенном расчетном диаметре меньшего шкива и известной средней скорости ремня или частоте вращения шкива.

Изложенная лекция, как и предыдущая, состоит из двух частей, первая из которых посвящена общим вопросам проектирования механических передач. В этой части лекции представлены основные параметры, характеризующие всякую механическую передачу, и показана связь между ними.

Во второй части лекции изложены теоретические основы расчета ременных передач, их геометрические, кинематические и силовые характеристики, представлены соотношения связывающие различные параметры ременных передач между собой. Более полные сведения о ременных передачах можно найти в учебной и технической литературе.

1. Какое устройство можно назвать механической передачей?

2. Какие основные параметры характеризуют механическую передачу?

3. В чем заключается разница между передаточным отношением и передаточным числом?

4. Что означает коэффициент полезного действия, коэффициент потерь, какова их сумма?

5. В чем разница между угловой скоростью и частотой вращения, в каких единицах они измеряются?

6. Как связаны скоростные и нагрузочные параметры прямолинейного и вращательного движения?

7. Как связаны тангенциальная сила и вращающий момент, ею создаваемый?

8. Что называют ременной передачей?

9. Какие виды ремней используются в ременных передачах?

10. Назовите основные геометрические параметры ременной передачи.

11. Каковы соотношения между силами натяжения ветвей ремня в ременной передаче - при неработающей передаче, в процессе работы?

12. Что характеризует коэффициент тяги ременной передачи?

13. Какие показатели ременной передачи непосредственно влияют на величину оптимального коэффициента тяги?

14. Что характеризует коэффициент скольжения ременной передачи?

15. Как определить точное значение передаточного числа ременной передачи?

16. Как меняется коэффициент скольжения и КПД с ростом коэффициента тяги?

17. Какие силы создают напряжения в ремне при работе ременной передачи?

18. Какие процессы, происходящие в ремне при работе передачи, ответственны за его усталостный износ?

19. Как выполняется проектный расчет плоскоременной передачи?

20. По какому критерию выполняется проверочный расчет ременной передачи?

21. Назовите основные особенности поперечного сечения клинового и поликлинового ремней?

22. Почему передача клиновым ремнем имеет большую несущую способность по сравнению с плоскоременной?

23. По каким критериям выполняется проектный расчет клиноременной передачи?

Лекция 9 РЕМЕННЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация ременных передач.

3. Кинематические и геометрические зависимости в ременных передачах.

4. Динамические зависимости.

5. Условия работоспособности, кривые скольжения, критерии расчета.

6. Порядок расчета ременных передач.

7. Натяжные устройства.

8. Шкивы.

1. Общие сведения

Простейшая ременная передача (рис. 9.1) состоит из двух шкивов – ведущего и ведомого, закрепленных на валах и ремнях, охватывающих шкивы.

Нагрузка передается силами трения, возникающими между шкивами и ремнями, вследствие предварительного натяжения ремня.

Применяется ременная передача для привода от электродвигателя небольшой и средней мощности отдельных механизмов. Окружная скорость до 5 м/с для передач с ремнем не рекомендуется. Обычные ременные передачи работают со скоростью до 10 м/с, а быстроходные – до 60–100 м/с.

Достоинства ременных передач:

1. Простота конструкции и эксплуатации, относительно низкая стоимость.

2. Плавность и бесшумность работы, обусловленная эластичностью ремня.

3. Возможность передачи мощности на большие расстояния (клиновыми ремнями до 15 м) при скорости до 100 м/с.

4. Смягчения вибраций и толчков благодаря упругости ремня.

5. Возможность предохранения механизмов от перегрузок за счет упругой вытяжки ремня и проскальзывания ремня.

6. Пониженные требования к точности взаимного расположения осей

Недостатки ременных передач:

1. Непостоянство передаточного числа из-за упругого проскальзывания ремня, в зависимости от величины нагрузки.

2. Значительные габариты.

3. Значительные нагрузки на валы и опоры от натяжения ремня.

4. Незначительная долговечность ремней (1000–5000 ч) в быстроходных передачах.

5. Необходимость в постоянном контроле во время работы из-за возможного соскакивания, обрыва и вытяжки ремней.

6. Неприменимость во взрывоопасных помещениях.

7. Необходимость предохранения от попадания масла на ремень.

2. Классификация ременных передач

По конструктивной разновидности. Основные разновидности ременных передач показаны на рис. 9.2–9.4. Наибольшее распространение имеют открытые передачи (рис. 9.2, а ), перекрестные передачи (рис. 9.2, б ) применяют для изменения направления вращения ведомого шкива.

При использовании натяжного ролика (рис. 9.3) увеличивается угол обхвата ремня шкивов.

Полуперекрестные, или угловые (рис. 9.4), ременные передачи осуществляют движение между валами с пересекающимися осями.

Передаточное число открытых ременных передач – до 5, перекрестных – до 6, полуперекрестных – до 3, с натяжным роликом – до 10.

Ременные передачи позволяют передавать движение одного ведущего шкива (поз. 1 рис. 9.5) к нескольким ведомым (поз. 2 рис. 9.5).

По профилю ремня. В зависимости от профиля ремни делятся на плоские (рис. 9.6, а ), клиновые (рис. 9.6, б ), круглые (рис. 9.6, в ) и поликлиновые (рис. 9.6, г ). Круглые ремни предназначены для передач в приводах малых мощностей: швейных машин, бытовых приборов, настольных станков, радиоаппаратуры и т. д.

Разновидностью приводных ремней является зубчатый ремень, передающий движения за счет зацепления зубьев шкива и трения.

П л о с к и е р е м н и. Среди традиционных плоских ремней наибольшей тяговой способностью обладают кожаные ремни . Они могут работать со скоростью до 40–45 м/с на шкивах малых диаметров и имеют износоустойчивые кромки. Ремни хорошо работают в условиях переменных и ударных нагрузок. Размеры кожаных ремней стандартизированы по ГОСТ 18670–73. В то же время стоимость их велика, вследствие чего они имеют ограниченное применение.

Хлопчатобумажные ремни (ГОСТ 6982–75) применяются в быстроходных передачах при небольших мощностях. Они обеспечивают плавную работу и более дешевые. Такие ремни не применяются в условиях трения по кромкам и при работе в сырых помещениях или температурах выше 50 ºС. Для быстроходных передач используют шитые и тканые бесконечные ремни толщиной 1,5–2 мм.

Шерстяные ремни (ОСТ/НКТП 3157) применяются для передачи средних мощностей, отличаются высокими упругими свойствами и поэтому хорошо зарекомендовали себя при работе с большими ударными нагрузками. Они менее чувствительные к взаимодействию температуры, влажности, паров кислоты и щелочей.

Наибольшее применение имеют плоские прорезиненные ремни. Основная нагрузка воспринимается хлопчатобумажной тканью (бельтингом), резиновые прослойки обеспечивают работу ремня как единого целого. Ремни выпускаются с шириной 20–120 мм, обладают хорошей нагрузочной способностью и допускают работу при скоростях до 30 м/с. Основной недостаток таких ремней – высокая чувствительность к воздействию агрессивных сред. Прорезиненные ремни выполняют как бесконечными, так и конечными, которые потом соединяют склеиванием.

Прорезиненные ремни выпускают трех видов: нарезные – тип А, послойно завернутые – тип Б и спирально завернутые – тип В. Нарезные ремни, состоящие из нескольких (нарезанных) слоев, используют при работе с большими скоростями и малыми диаметрами шкивов. Ремни типа Б выпускают с резиновыми прокладками и без них и применяют при скорости до 20 м/с. Ремни типа В работают со скоростями не выше 15 м/с, их применяют на шкивах с ребордами и в перекрестных передачах.

Весьма перспективны ремни из синтетических материалов.

Пленочные, или синтетические, ремни (МРТУ 17-645–69) обладают высокой статической прочностью и долговечностью, выдерживают температуру 50 ºС

и относительную влажность до 95 %. Изготавливают пленочные ремни из тканей просвечивающего и гарнитурного переплетения для ширины до 75 мм

и с переплетением на основе двухуточной саржи для ширины до 50 мм с

пропиткой и облицовкой синтетическим материалом. Ремни из ткани просвечивающего переплетения более легкие. Пленочные ремни могут работать при скорости от 50 до 100 м/с.

На основе синтетических материалов разработаны многослойные ремни Exstramultus, которые не выдерживают действие кислот, фенола, но малочувствительны к маслам, охлаждающей жидкости, бензину, бензолу. Вследствие высокого предела упругости материала (сердечник из полиамида, наружный слой из хромовой кожи и поливинилхлорида) ремни не получают остаточных удлинений даже при перегрузке и не требуют подтягивания.

К л и н о в ы е р е м н и. Обычные клиновые ремни изготавливают двух конструкций: кордтканевые и кордшнуровые (рис. 9.7, а , б ) в которых передатчиком нагрузки служит корд из бельтинга, расположенный в нейтральном слое. Слой под кордом (слой сжатия) изготавливают из более твердой резины, а слой над кордом (слой растяжения) – из резины средней твердости. Оболочку клиновых ремней изготавливают из текстильной пряжи, искусственного шелка или нейлона с покрытиями из специальных материалов для повышения сопротивляемости разрушению.

Кордшнуровые ремни более гибкие и долговечные, а кордтканевые лучше переносят перегрузки, имеют большую поперечную жесткость и амортизирующую способность.

Замена бельтинга синтетическими волокнами (лавсан, вискоза, анид) позволяет повысить прочность ремней или уменьшить их ширину (узкие клиновые ремни).

В зависимости от отношения расчетной ширины b р к высоте h клиновые ремни изготавливают трех видов сечения: нормального (b p / h 1,4) ,

узкого (b p /h = 1,05–1,1) и широкого (b p /h = 2–4,5).

Ремни нормального сечения (ГОСТ 1284.1–80, ГОСТ 1284.2–80, ГОСТ 1284.3–80) выпускают семи сечений (0, А, Б, В, Г, Д, Е), отличающихся друг от друга размерами при геометрическом подобии и бесконечной длине. Профили Г, Д, Е в настоящее время все чаще заменяются поликлиновыми ремнями. Допускаемая скорость для профилей 0, А, Б, В – до 25 м/с (рис. 9.7, в ), для профилей Г, Д, Е – до 30 м/с.

Узкие клиновые ремни (РТМ 51-15-15-70) имеют сечения четырех размеров: У0, УА, УБ и УВ, которые по нагрузочной способности могут заменить все сечения нормальных клиновых ремней. Максимальная скорость для них – до 40 м/с.

Широкие клиновые ремни используют в основном в вариаторах. Благодаря повышенному сцеплению со шкивами, обусловленному эффектом клина, чем плоскоременных.

b0 b 0

Недостатки клиновых ремней : большие потери на трение и большие напряжения изгиба в ремне.

К клиновым ремням относят поликлиновые ремни (рис. 9.8), которые сочетают достоинства клиновых ремней (повышенное сцепление со шкивами) и плоских (гибкость). Такие ремни могут передавать большие мощности, хорошо работать на малых шкивах, допустимые скорости для них – до 40 м/с. Передачи с поликлиновыми ремнями отличаются меньшими габаритами.

Разработаны ремни трех сечений (рис. 9.8): К, Л, М, размеры которых регламентированы РТМ 38-40528-74. В американских и канадских стандартах предусмотрены еще два сечения (Н и J ) меньших размеров, в основном для бытовой техники и легкой промышленности.

Наряду с перечисленными видами клиновых ремней выпускают ремни с вогнутым нижним, а иногда и выпуклым верхним основаниями. Вогнутость увеличивает продольную гибкость ремня при его изгибе. Выпуклость превышает поперечную жесткость ремня и способствует сохранению трапециевидной формы ремня, предупреждая его деформацию. Чтобы сделать ремень достаточно гибким, по нижнему основанию, а иногда и по обоим, делают зубцы. Для уменьшения износа кромки ремней скашивают.

Двойной клиновый ремень, работающий верхней и нижней частями на различных шкивах, широко используют в сельхозмашиностроении, хотя его долговечность ниже, чем у обычного.

В некоторых случаях (при необходимости сложного монтажа) целесообразно использовать конечные клиновые ремни или ремни, составленные из отдельных элементов, но их долговечность меньше бесконечных.

З у б ч а т ы е и к р у г л ы е р е м н и. Зубчатые ремни сочетают преимущества плоских ремней и зубчатых зацеплений. Их изготавливают из маслостойких искусственных материалов, из резины на основе хлоропреновых каучуков, из вулкалана, которые армируют стальными или полиамидными проволочками.

Зубчатые ремни не имеют скольжения, требуют меньшего натяжения, создают меньшие нагрузки на валы и опоры, работают почти бесшумно со скоростью до 80 м/с. Однако расход мощности на деформацию зубьев у них больше, больший собственный вес, шкивы для них дороже, ремень нуждается в предохранении от осевого смещения (используют шкивы с ребордами). Зубчатые ремни выпускают шириной 5–380 мм, с модулем от 2–10 мм.

Из круглых ремней наиболее распространены хлопчатобумажные, капроновые, реже используют прорезиненные и кожаные.

3. Кинематические и геометрические зависимости

в ременных передачах

Мощности . Диапазон мощностей, передаваемых цепями, довольно широк – от 0,3 до 50 кВт. Можно использовать цепи и при больших мощностях, но при этом резко возрастают габариты.

Скорости. В ременных передачах верхний предел скоростей ограничивается ухудшением условий работы ремня в связи с ростом центробежных сил, что приводит к образованию воздушной подушки между шкивом и ремнем и уменьшает долговечность ремня.

Скорость ведущего шкива, м/с:

v 1 ω 1d 1 π d 1n 1 .

Значение скоростей для отдельных видов передач и материалов, из которых они выполняются, имеют определенный предел:

Обычные материалы. . . . . . . . . . . . . . . . . . . . . . . .

От 5 до 30 м /с

Специальные текстильные или прорезиненные.

До 50 м /с

Полиамидные, пленочные. . . . . . . . . . . . . . . . . . . .

До 100 м /с

Ремни клиновые:

типа 0, А, Б, В. . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 25 м /с

типа Г, Д, Е. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 30 м /с

Из-за неизбежного скольжения окружные

скорости ведущего и

ведомого шкивов не равны, т. е. v 1 v 2 и v 1 v 2 ;

v 2 1 ξ v 1 ,

где ξ – коэффициент упругого или относительного скольжения; для плоских ремней ξ = 0,01–0,012; для клиновых ремней ξ = 0,015–0,02.

Передаточные отношения

ограничиваются габаритами передачи,

а также условием получения достаточного угла обхвата на малом шкиве:

i max = 10, i опт = 2,5–4,

d 1 ξ

Диаметры шкивов:

для плоских ремней

d 1 1100 1300

d 2 d 1 i 1 ξ ;

для клиновых ремней d 1 выбирают по таблицам в зависимости от типа ремня, а d 2 – как для плоских ремней;

для поликлиновых ремней

d1 a b T1 ,

где a и b – коэффициенты диаметра d 1 ; а = 65, b= 3 при Т 1 ≤ 25 Н м; а = 45,

b = 2 при Т 1 ≥ 26–90 Н м;

для зубчатых ремней d 1 выбирают по таблицам в зависимости от модуля зацепления. Модуль m вычисляют исходя из усталостной прочности зубьев ремня:

m k 3 1 p ,

где k – коэффициент, учитывающий форму зуба; k = 35 для ремней с трапецеидальной формой зубьев, k = 25 для ремней с полукруглой формой зубьев; Р 1 – номинальная мощность на ведущем валу, кВт; с р – коэффициент динамичности и режима работы, с р = 1,3–2,4.

Диаметр ведомого шкива

d2 = mZ2 .

Межосевое расстояние выбирают таким, чтобы можно было обеспечить необходимый угол обхвата на малом шкиве (рис. 9.9): для плоских ремней α > 150º, для клиновых – α > 120º.

Для плоских ремней

a min = 2(d 1 + d 2),

для клиновых ремней

a min = 0,5(d 1 + d 2 ) + h.

Максимальное межосевое расстояние a mаx ограничивается габаритными размерами и стоимостью передачи.

Малые размеры шкивов снижают долговечность передачи, так как

увеличиваются изгибные напряжения.

α 180 γ 180

d 1 d 2

57o .

Длина ремня

l 2 a

d 1 d 2

Для конечных ремней расчетная длина ремня согласуется с ГОСТом, а затем по окончательно принятой длине ремня уточняется величина межцентрового расстояния.

Уточненное значение межцентрового расстояния

2 l π d d

a 0, 25

2 l π d d

2 8 d

4. Динамические зависимости

Окружная сила рассчитывается по формуле

K P F t д 1 ,

где K д – коэффициент, учитывающий динамическую нагрузку и режим работы (определяется по таблице в зависимости от характера нагружения); K д 1; Р 1 – мощность на ведущем шкиве, кВт (Вт).

Усилие предварительного натяжения. Начальное натяжение ремня F 0

выбирается таким, чтобы ремень мог сохранять это натяжение достаточно длительное время, не вытягиваясь и обеспечивая достаточное сцепление между ремнем и шкивами:

F 0 A σ 0 ,

где А – площадь сечения ремня; σ0 – напряжение предварительного натяжения; σ0 = 1,8 МПа для плоских ремней без натяжного устройства; σ0 = 2,0 МПа для плоских ремней с автоматическим натяжением; σ0 = 1,2–1,5 МПа для клиновых ремней; σ0 = 3–4 МПа для полиамидных ремней.

Усилия в ветвях ремня. Величина усилий в ведущей F 1 и ведомой F 2 ветвях определяется из условия равновесия моментов на ведущем шкиве, которое записывается в виде

T 1 0,5 d 1 F 1 F 2 0,5 d 1F t .

Ре­мённая передача относится к механическим передачам с гибкой связью, в ко­торых гибкими промежуточными звеньями могут быть ремни, цепи или кана­ты. Ремённые передачи плоским ремнём получили распространение в XIX веке для привода текстильных и токарных станков. Затем были предложены клино­вые и зубчатые ремни. По принципу работы различают ремённые передачи трением (большинство передач) и зацеплением (зубчато-ремённые передачи).

Приступая к изучению этой темы, прежде всего, следует уяснить отличие ремённой передачи от всех других. Это отличие состоит в том, что при увели­чении нагрузки основная деталь передачи - ремень - до конца использует свою тяговую способность, определяемую силой трения между ремнём и шкивом, а затем начинается буксование шкива по ремню. В результате сильного нагрева ремень может быть разрушен и передача выходит из строя.

Ремённая передача (рис. 102,а)состоит из двух шкивов 1 и 2, ремня 3 и на­тяжного устройства 4. Механическая энергия от ведущего шкива к ведомому шкиву передаётся за счёт сил трения, возникающих при надевании ремня на шкивы с предварительным (монтажным) натяжением Fo. По форме поперечно­го сечения ремней различают передачи с плоским (рис. 102,б), клиновым (рис. 102, в), поликлиновым (рис. 102, г) и зубчатым ремнём.

Обычно ремённые передачи используют в качестве первой от двигателя ступени привода. В этом случае её габариты и масса оказываются сравнительно небольшими.

Достоинства ремённой передачи трением: возможность работы с высокими скоростями, предохранение узлов привода от перегрузок, простота конструкции, бесшумность при работе, дешевизна.

Недостатки: малая долговечность ремня в быстроходных передачах, большие габариты передачи, зна­чительные усилия на валы и опоры.

К материалам ремней предъявляются требования высокой прочности при переменных напряжениях, износостойкости, максимального коэффициента трения по рабочей поверхности шкива, минимальной изгибной жёсткости. Область применения плоскоремённых передач - быстроходные переда­чи при высоких требованиях к плавности работы.

Рис.102. Ремённая передача (а) и форма поперечного сечения ремней: б - плоского, в - клинового, г – поликлинового.

Высокоскоростные плоскоремённые передачи применяют как ускоритель­ные в приводах быстроходных технологических машин, например, шлифо­вальных станков, центрифуг и др. При скорости ремня v > 30 м/с передача мощности может и должна осуществляться только плоскими тонкими бесшов­ными (бесконечными) ремнями в виде замкнутой ленты определённой длины. Никакие сшивки или другие виды соединения концов ремня высокоскоростных передач недопустимы, так как ремни неизбежно рвутся от динамических воздействий в местах соединения. Быстроходные ремни выполняют тонкими из соображений долговечности, требующей минимальных напряжений изгиба, от которых, главным образом, при большом числе перегибов ремня в секунду за­висит усталостная прочность материала ремня.

Современными типами плоских бесконечных ремней являются синтетические тканые (рис. 103, а, вверху) и прорезиненные кордшнуровые ремни (рис. 103, а, внизу). Благодаря высокой упругости материала они хорошо амортизи­руют колебания нагрузки и вибрации деталей. Ширина синтетических тканых ремней от 10 до 100 мм, толщина ремня 0,8 или 1 мм, диапазон длин от 250 до 3350 мм. Допустимая скорость до 75 м/с. Ширина прорезиненных кордошнуровых ремней от 30 до 60 мм, толщина 2,8 мм, внутренняя длина от 500 до 5600 мм. Допустимая скорость до 35 м/с. При расчёте плоскоремённой передачи определяют размеры поперечного сечения ремня. Изменением ширины плоского ремня b р можно варьировать нагрузочную способность передачи.

Рис. 103. Конструкции поперечного сечения тяговых ремней: а - плоских, б - клиновых, в - поликлиновых

Клиноремённые передачи имеют универсальное назначение. Клиновые ремни обеспечивают большую тяговую способность и меньшие габариты передачи для одинаковой мощности по сравнению с передачами плоским ремнём. Распространение получили кордтканевые и кордшнуровые ремни (рис. 103, б)слойной конструкции, изготовляемые бесконечными. Клиновые ремни в пере­даче применяют от 2 до 8 штук в комплекте, чтобы варьировать нагрузочную способность передачи. Из-за «рассеяния» длин ремней нагрузка между ними в комплекте распределяется неравномерно, поэтому в клиноремённых передачах требуется подбирать ремни с минимальным отклонением по длине. Клиновые ремни выполняют с углом φ = 36...40°. Отношение большего основания трапециевидного сечения к высоте b p /h ≈ 1,6 (ремни нормального сечения) или b p /h ≈ 1,2 (узкие клиновые ремни). Узкие клиновые ремни вслед­ствие большей гибкости дают возможность заменить ремни нормальных сече­ний, уменьшить количество ремней в комплекте и размеры передачи.

Поликлиновой ремень (рис. 103, е) - плоский бесконечный ремень со шну­ровым кордом и клиновыми выступами на нижней стороне. Он имеет строго фиксированное и постоянное положение нейтрального слоя, а также ширину и длину рабочих клиньев. Это гарантирует спокойную работу, позволяет приме­нить шкивы меньших диаметров и работать при скоростях до 40 м/с. Ширина поликлинового ремня при передаче такой же мощности значительно меньше ширины комплекта обычных клиновых ремней.

Тип клинового ремня - ремень нормального сечения (Z, А, В, С, D, Е, ЕО), узкий клиновой ремень (сечения УО, УА, УБ или УВ) или поликлиновой ре­мень (сечения К, Л или М) - назначают в зависимости от величины вращающе­го момента на ведущем шкиве Т 1 , Н∙м. При расчёте клиноремённой передачи определяют не размеры поперечного сечения ремня, а количество клиновых ремней z p в комплекте или количество клиньев z поликлинового ремня.

Зубчато-ремённая передача (рис. 104) соединяет в себе достоинства ре­мённых и цепных передач. По названию и конструкции тягового органа эту пе­редачу относят к ремённым, а по принципу работы - к цепным передачам. Та­кая передача компактна, работает плавно и почти бесшумно, не требует смазы­вания и тщательного ухода. Принцип зацепления устраняет проскальзывание ремня на шкивах, нет необходимости и в большом предварительном натяжении ремня.

Ременная передача - это механизм переноса энергии с помощью приводного ремня, использующего силы трения или зацепления. Величина передаваемой нагрузки зависит от натяжения, угла обхвата и коэффициента трения. Ремни огибают шкивы, один из которых ведущий, а другой - ведомый.

Достоинства и недостатки

Ременная передача имеет следующие положительные свойства:

  • бесшумность и плавность в работе;
  • не требуется высокая точность изготовления;
  • проскальзывание при перегрузках и сглаживание вибраций;
  • нет необходимости в смазке;
  • небольшая стоимость;
  • возможность ручной замены передачи;
  • легкость монтажа;
  • отсутствие поломок привода при обрыве ремня.

Недостатки:

  • большие размеры шкивов;
  • нарушение передаточного отношения при проскальзывании ремня;
  • небольшая мощность.

В зависимости от вида ремень бывает плоским, клиновым, круглым и зубчатым. Этот элемент ременной передачи может объединять преимущества нескольких типов, например, поликлиновый.

Области использования

  1. Привод ременной передачи с плоским ремнем применяется на станках, пилорамах, генераторах, вентиляторах, а также везде, где требуется повышенная гибкость и допускается проскальзывание. Для высоких скоростей используются синтетические материалы, для меньших - кордтканевые или прорезиненные.
  2. Ременная передача с клиновыми ремнями применяется для сельскохозяйственной техники и автомобилей (вентиляторная), в тяжелонагруженных и высокоскоростных приводах (узкая и нормального сечения).
  3. Вариаторы нужны там, где скорость вращения промышленных машин регулируется бесступенчато.
  4. Приводы с зубчатыми ремнями обеспечивают наилучшие характеристики передач в промышленности и в бытовой технике, где требуются долговечность и надежность.
  5. Круглоременные применяются для малых мощностей.

Материалы

Материалы подбираются к условиям эксплуатации, где основное значение имеют нагрузка и тип. Они бывают следующими:

  • плоские - кожаные, прорезиненные со сшивкой, цельнотканевые из шерсти, хлопчатобумажные или синтетические;
  • клиновые - армирующий слой в центре с резиновой сердцевиной и тканая лента наружи;
  • зубчатые - несущий слой из металлического троса, полиамидного шнура или стекловолокна в основе из резины или пластмассы.

Поверхности ремней покрываются тканями с пропиткой для повышения износостойкости.

Плоские ремни ременных передач

Типы передач бывают следующими:

  1. Открытые - с параллельными осями и вращением шкивов в одном направлении.
  2. Шкивы со ступенями - можно изменить обороты ведомого вала, при этом у ведущего они постоянные.
  3. Перекрестные, когда оси параллельны, а вращение происходит в разных направлениях.
  4. Полуперекрестные - оси валов скрещиваются.
  5. С натяжным роликом, увеличивающим угол обхвата шкива меньшего диаметра.

Ременная передача открытого типа применяется для работы при высокой скорости и с большим межосевым расстоянием. Высокие КПД, нагрузочная способность и долговечность позволяют использовать ее в промышленности, в частности для сельскохозяйственных машин.

Клиноременная передача

Передача характеризуется трапециевидным поперечным сечением ремня и соприкасающимися с ним поверхностями шкивов. Передаваемые усилия при этом могут быть значительными, но ее КПД - небольшой. Клиноременная передача отличается небольшим расстоянием между осями и высоким передаточным числом.

Зубчатые ремни

Передача применяется для высокой скорости при небольшом расстоянии между осями. Она обладает одновременно преимуществами ременных и цепных приводов: работа при высоких нагрузках и с постоянным передаточным отношением. Мощность 100 кВт может обеспечивать преимущественно зубчатая ременная передача. Обороты при этом являются очень высокими - скорость ремня достигает 50 м/с.

Шкивы

Шкив ременной передачи бывает литым, сварным или сборным. Материал выбирают в зависимости от оборотов. Если он изготовлен из текстолита или пластмассы, скорость составляет не более 25 м/с. Если она превышает 5 м/с, требуется статическая балансировка, а для быстроходных передач - динамическая.
В процессе работы у шкивов с плоскими ремнями происходит износ обода от проскальзывания, надлом, трещины, поломка спиц. В клиноременных передачах изнашиваются канавки на рабочих поверхностях, ломаются буртики, происходит разбалансировка.

Если вырабатывается отверстие ступицы, его растачивают, а затем запрессовывают втулку. Для большей надежности ее делают одновременно с внутренним и наружным шпоночными пазами. Тонкостенную втулку устанавливают на клей и крепят болтами через фланец.

Трещины и изломы заваривают, для чего шкив сначала разогревают для устранения остаточных напряжений.

При обтачивании обода под клиновидный ремень допускается, что частота вращения может изменяться до 5% от номинальной.

Расчет передач

Все расчеты для любых типов ремней основаны на определении геометрических параметров, тяговой способности и долговечности.

1. Определение геометрических характеристик и нагрузок. Расчет ременной передачи удобно рассмотреть на конкретном примере. Пусть нужно определить параметры ременного привода от электрического двигателя мощностью 3 кВт к токарному станку. Частоты вращения валов составляют, соответственно, n 1 = 1410 мин -1 и n 2 = 700 мин -1 .

Выбирается обычно узкий клиновой ремень как наиболее часто используемый. Номинальный момент на ведущем шкиве составляет:

T1 = 9550P 1: n 1 = 9550 х 3 х 1000: 1410 = 20,3 Нм.

Из справочных таблиц выбирается диаметр ведущего шкива d 1 = 63 мм с профилем SPZ.
Скорость ремня определяется так:

V = 3,14d 1 n 1: (60 х 1000) = 3,14 х 63 х 1410: (60 х 1000) = 4,55 м/с.

Она не превышает допустимую, которая составляет 40 м/с для выбранного типа. Диаметр большого шкива составит:

d2 = d 1 u х (1 - e y) = 63 х 1410 х (1-0,01) : 700 = 125,6 мм.

Результат приводится к ближнему значению из стандартного ряда: d 2 = 125 мм.
Расстояние между осями и длину ремня находят из следующих формул:

a = 1,2d 2 = 1,2 х 125 = 150 мм;
L = 2a + 3,14d cp + ∆ 2: a = 2 х 150 + 3,14 х (63 + 125) : 2 + (125 - 63) 2: (4 х 150) = 601,7 мм.

После округления до ближайшего значения из стандартного ряда получается окончательный результат: L= 630 мм.

Межосевое расстояние изменится, и его можно снова пересчитать по более точной формуле:

a = (L - 3,14d cp) : 4 + 1: 4 х ((L - 3,14d cp) 2 - 8∆ 2) 1/2 = 164,4 мм.

Для типовых условий передаваемая одним ремнем мощность определяется по номограммам и составляет 1 кВт. Для реальной ситуации ее надо уточнить по формуле:

[P] = P 0 K a K p K L K u .

После определения коэффициентов по таблицам получается:

[P] = 1 х 0,946 х 1 х 0,856 х 1,13 = 0,92 кВт.

Требуемое количество ремней определяется делением мощности электродвигателя на мощность, которую может передавать один ремень, но при этом еще вводится коэффициент С z = 0,9:

z = P 1: ([P]C z) = 3: (0,92 х 0,9) = 3,62 ≈ 4.

Сила натяжения ремня составляет: F 0 = σ 0 A = 3 х 56 = 168 H, где площадь сечения А находится по таблице справочника.

Окончательно нагрузка на валы от всех четырех ремней составит: F sum = 2F 0 z cos(2∆/a) = 1650 H.

2. Долговечность. В расчет ременной передачи входит также определение долговечности. Она зависит от сопротивления усталости, определяемого величиной напряжений в ремне и частотой их циклов (количество изгибов в единицу времени). От появляющихся при этом деформаций и трения внутри ремня происходят разрушения усталости - надрывы и трещины.

Один цикл нагрузки проявляется в виде четырехкратного изменения напряжений в ремне. Частота пробегов определяется из такого соотношения: U = V: l < U d ,
где V - скорость, м/с; l - длина, м; U d - допускаемая частота (<= 10 - 20 для клиновых ремней).

3. Расчет зубчатых ремней. Главным параметром является модуль: m = p: n, где p - окружной шаг.

Величина модуля зависит от угловой скорости и мощности: m = 1,65 х 10-3 х (P 1: w 1) 1/3 .

Поскольку он стандартизован, расчетная величина приводится к ближайшему значению ряда. Для высоких скоростей берутся повышенные значения.

Число зубьев ведомого шкива определяется по передаточному числу: z 2 = uz 1 .

Межосевое расстояние зависит от диаметров шкивов: a = (0,5...2) х (d 1 + d 2).

У ремня число зубьев будет равно: z p = L: (3,14m), где L - ориентировочная расчетная длина ремня.

После выбирают ближнее стандартное число зубьев, затем определяют точную длину ремня из последнего соотношения.

Нужно также определить ширину ремня: b = F t: q, где F t - окружная сила, q - удельное натяжение ремня, выбираемое по модулю.

Нагрузка на валы составит: R = (1...1,2) х F t .

Заключение

Работоспособность ременных передач зависит от типа ремней и условий их эксплуатации. Правильный расчет позволит выбрать надежный и долговечный привод.


Ременная передача – это передача гибкой связью (рис. 5.2), состоящая из ведущего 1 и ведомого 2 шкивов и надетого на них ремня 3 . В состав передачи могут также входить натяжные устройства и ограждения. Возможно использование нескольких ведомых шкивов и нескольких ремней. Шкивы жестко закреплены на ведущем и ведомом валах.

Основное назначение – передача механической энергии с понижением частоты вращения.

По принципу действия различают передачи трением (большинство передач) и зацеплением (зубчато-ременные). В зависимости от формы поперечного сечения ремня различают ременные передачи: плоские, клиновые , поликлиновые, круглые, квадратные. Клиновые, поликлиновые, зубчатые и быстроходные плоские ремни изготавливают бесконечно замкнутыми. Плоские ремни преимущественно выпускают конечными – в виде длинных лент.

Достоинства ременных передач трением: отсутствие смазочной системы, простота и низкая стоимость конструкции, предохранение от резких колебаний нагрузки и ударов, возможность передачи движения на значительные расстояния, защита от перегрузки за счет проскальзывания ремня по шкиву, плавность и низкая шумность работы.

Недостатки: малая долговечность ремней в быстроходных передачах; значительные габариты; непостоянство передаточного отношения (из-за проскальзывания ремней на шкивах); необходимость защиты ремня от попадания масла; значительные силы, действующие на валы и опоры.

Для определения передаточного отношения ременной передачи принимают, что ремень не вытягивается и не проскальзывает на шкивах. Такое допущение не вносит существенной погрешности в расчеты, поскольку линейная скорость [м/с] любой точки, лежащей на поверхности вращающегося тела (в нашем случае - ведущего шкива), определяется как

где – угловая скорость, рад/с; - диаметр шкива, м; - число оборотов в минуту, об/мин.

Так как любая точка ремня, совпадающая с рассматриваемой точкой ведущего шкива, движется с той же линейной скоростью (а значит, и те точки ремня, которые контактируют с ведомым шкивом, и совпадающие с ними точки ведомого шкива имеют ту же линейную скорость).

Соответственно также определяется и линейная скорость любой точки обода ведомого шкива: При этом отношение линейных скоростей и ведомого, и ведущего шкивов равно , или и, следовательно, или .

Передаточное отношение передачи выражается отношением диаметров ведомого и ведущего шкивов:

Углы и (см. рис. 5.2), соответствующие дугам, по которым касаются ремень и шкив, называются углами обхвата .

Поскольку ременная передача передает вращение за счет сил трения между ремнем и шкивом, ее работоспособность существенно зависит от углов обхвата, определяющим из которых является угол обхвата на меньшем шкиве. Его величина в первую очередь зависит от расстояния между центрами шкивов (межосевое расстояние) и передаточного отношения. Практика показала, что плоскоременная передача работает нормально, если угол обхвата не менее 120 градусов. Это требование выполняется, если соблюдаются следующие условия: межосевое расстояние не меньше удвоенной суммы диаметров шкивов.

Можно обеспечить работоспособность плоскоременной передачи и при больших передаточных отношениях, применив натяжной ролик 4 (см. рис. 5.3), который увеличит угол обхвата на меньшем шкиве.

Предельная окружная скорость плоскоременной передачи в зависимости от материала ремня лежит в пределах 20…40 м/с.

Более совершенным видом передачи движения гибкой связью является клиноременная, где на ободе шкивов сделаны канавки, в которые входит ремень, имеющий в поперечном сечении форму трапеции. В этих передачах полезная нагрузка передается за счет сил трения между боковыми поверхностями ремня и канавок шкивов. Трапециевидное сечение ремня за счет расклинивания увеличивает его сцепление со шкивом и повышает тяговую способность передачи. Это дает возможность осуществления более высоких передаточных отношений (до 7 и даже до 10), возможность применения при малых межцентровых расстояниях.

Если для плоскоременной передачи межцентровое расстояние

то для клиноременной передачи , что позволяет одной передачей осуществить вращение нескольких ведомых валов без применения натяжных роликов.

На кинематических схемах ременные передачи имеют соответствующие условные обозначения (на рис. 5.4, а с плоским, а на рис. 5.4, б - с клиновым ремнями).

В последнее время стали широко применяться зубчато-ременные передачи. На рабочей поверхности ремня имеются выступы - зубья, которые входят в зацепление с аналогичными зубьями на шкивах. Такие передачи работают без скольжения, что обеспечивает постоянство передаточного отношения.

В некоторых случаях применяют более сложную ременную передачу - многоступенчатую (рис. 5.5), состоящую из нескольких ступеней (пар шкивов).

Передаточные отношения отдельных ступеней ( , , ) выражаются через соотношения диаметров ведомых () и ведущих () шкивов. Применительно ко всей передаче - диаметр ведущего шкива, а - диаметр ведомого шкива, однако их отношение не будет искомым передаточным отношением всей передачи, так как эти шкивы не связаны единым ремнем.

Определим требуемое соотношение, приняв во внимание, что ведущий вал (не шкив!) каждой последующей ступени одновременно является ведомым валом предыдущей.

Передаточное отношение первой пары шкивов

Передаточное отношение второй пары шкивов

Так как шкивы диаметром и закреплены на одном валу, .

Передаточное отношение третьей пары шкивов

а , следовательно, .

Передаточное отношение всей передачи

Таким образом, передаточное отношение ременной многоступенчатой передачи равно произведению передаточных отношений отдельных ее ступеней.