Максимальное передаточное отношение клиноременной передачи равно. Виды ремённых передач, материалы ремней и шкивов

Ременная передача (рис. 4.58, а) состоит из ведущем и ведомом шкивов, соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива передастся к ведомому благодаря трению, развиваемому между привод-

Рис. 458

ным ремнем и шкивами или зацеплением (зубчато-ременная передача).

Преимущества: возможность осуществления передачи между валами, расположенными на значительном расстоянии; плавность и бесшумность работы; защита от перегрузок связана со способностью ремня передать лишь определенную нагрузку, свыше которой происходит буксование (скольжение) ремня но шкиву; небольшая стоимость и легкость ухода за передачей.

Недостатки: большие габаритные размеры; непостоянство передаточного отношения из-за проскальзывания ремня; повышенные силы давления па валы и подшипники, так как суммарное натяжение ветвей ремня значительно больше окружной силы передачи; малая долговечность ремней и необходимость предохранения их от попадания масла; необходимость устройств для натяжения ремней.

В большинстве случаев ременные передачи применяют для передачи мощностей 0,3–50 кВт: КПД для плоскоременной передачи в = 0,96, а для клиноременной в = 0,95.

По форме поперечного сечения приводные ремни передач трением делятся на плоские (рис. 4.586), клиновые (рис. 4.58,в), поликлиновые (рис. 4.58, г), круглые (рис. 4.58, д) и др.

Соответственно по форме поперечного сечения ремня различают плоскоременные, клиноременные, поликлиновые и круглоременные передачи.

Материалы и конструкции ремней. Приводной ремень должен обладать определенной тяговой способностью (способностью передавать заданную нагрузку без буксования) и потребной долговечностью. Тяговая способность ремня обеспечивается надежным сцеплением его со шкивами, что определяется высоким коэффициентом трения между ними. Долговечность ремня зависит от возникающих в нем напряжений изгиба и частоты циклов нагружений. Но материалу и конструкции различают несколько типов ремней.

Плоские ремни. К стандартным плоским ремням относятся прорезиненные тканевые, кожаные, хлопчатобумажные цельнотканые и шерстяные. Концы плоских ремней можно соединять (сшивкой, склеиванием, металлическими скрепками), а в быстроходных передачах используются бесшовные (бесконечные).

Клиновые ремни. Их изготовляют трех типов: нормального сечения, узкие и широкие для вариаторов. Ремни нормального сечения – основные в общем машиностроении. В соответствии с ГОСТом эти ремни изготовляют семи различных по размерам сечений: О, А, Б, В, Г, Д и Е. Допускаемая максимальная скорость для профилей О, А, Б, В – до 25 м/с, для Г, Д и Е – до 30 м/с. Сечения ремней увеличиваются от О к Е. Клиновые ремни получили наиболее широкое применение в промышленности.

Поликлиновые ремни . По конструкции они подобны клиновым. В тонкой плоской части их (см. рис. 4.58 и 4.59, а) помещаются высокопрочный шнуровой корд из вискозы, стекловолокна или лавсана и несколько слоев диагонально расположенной ткани, придающей ремню большую поперечную жесткость. Поликлиновые передачи – самые компактные из всех ременных передач и могут работать со скоростью v ≤ 40 м/с.

Зубчатые ремни (рис. 4.59, б). Они сочетают преимущества плоских ремней и зубчатых зацеплений. На рабочей поверхности ремней делают выступы (зубья), которые входят в зацепление с выступами (зубьями) на шкивах. Зубчатые ремни устанавливают без предварительного натяжения. Они работают бесшумно без проскальзывания и имеют постоянное передаточное отношение. По сравнению с обык-

Рис. 4.59

новенной ременной передачей трением зубчатоременные значительно компактнее и имеют более высокий КПД.

Материалы и конструкции шкивов. Шкивы ременных передач изготовляют из чугуна, стали, легких сплавов, пластмасс и дерева. Наружная часть шкива, на которой устанавливают ремень (ремни), называется ободом, а центральная часть, насаживаемая на вал, называется ступицей. Обод со ступицей соединяется диском или спицами.

Кинематика, геометрия и силы в ременных передачах. Схема нагружения ремня приведена на рис. 4.60, где– угол обхвата ремнем шкива; а межосевое расстояние;– дуга скольжения, на которой наблюдается упругое скольжение.

Сила натяженияведущей ветви 3 ремня, сбегающей с ведомого шкива 2 во время работы передачи, больше силы натяжениясто ведомой ветви 1, набегающей на ведомый шкив 2. Из распределения сил в поперечных сечениях ремня следует, что на ведущем шкиве 1 сила натяжения постепенно уменьшается, а на ведомом 2 – увеличивается. Разные натяжения ведущей и ведомой ветвей ремня вызывает упругое скольжение ремня на шкивах.

Окружные скорости (м/с) ведущего г;} и ведомого v 2 шкивов определяют по формулам

где– частота вращения, об/мин;– диаметр ι-го шкива, мм.

Вследствие упругого скольжения ремня на шкивах на ведущем шкиве окружная скоростьбольше окружной скорости на ведомом:

Рис. 4.60

где– коэффициент упругого скольжения. Упругое проскальзывание лежит в пределахи увеличивается с ростом нагрузки.

Передаточное отношение ременной передачи с учетом проскальзывания определяется следующим образом:

Обычно передаточное отношение выбирают не более 4–5. Диаметр меньшего шкива плоскоременной передачи , где– мощность, кВт;– частота вращения ведущего шкива, об/мин.

Диаметр большего шкива как для плоскоременной, так и для клиноременной передачи равен . Угол обхвата ремнем меньшего шкива

где– межосевое расстояние передачи, мм.

Рекомендуют принимать для плоскоременной передачи и для клиноременной. С уменьшением уменьшается сцепление шкива с ремнем. Межосевое расстояние ременной передачи а определяется конструкцией машины или ее привода,

Длина ремней передачи вычисленное L согласовывают со стандартами для ремней.

Окружная сила на шкивах определяется передаваемой нагрузкой, Н:

где– расчетный вращающий момент, II ∙ м;– диаметр шкива, мм.

Окружная сила равна разности натяжений ветвей ремня

Для нормальной работы необходимо обеспечи ть предварительное натяжения ремня

где Л – площадь поперечного сечения ремня плоскоременной передачи или площадь поперечного сечения всех ремней клиноременной передачи;– нормальное напряжение от предварительного натяжения ремня. С ростомнагрузочная способность передачи увеличивается.

Предварительное напряжениев ремне принимают для плоских стандартных ремней МПа; для клиновых стандартных ремней МПа; для полиамидных ремней МПа.

Сумма натяжений ведущейи ведомойветвей ремня

Из системы двух уравнений (4.86) и (4.87) получаем выражения

Передаваемая нагрузка jзависит от силы трения между ремнем и шкивом. Эту связь при максимальном значении, исключающим пробуксовки, определяют по формуле Эйлера:

где– коэффициент трения;– угол между ветвями ремня.

Наибольшие напряжения возникают в ведущей ветви ремня. Нормальное напряжение в ремне от действия силы


Ременная передача – это передача гибкой связью (рис. 5.2), состоящая из ведущего 1 и ведомого 2 шкивов и надетого на них ремня 3 . В состав передачи могут также входить натяжные устройства и ограждения. Возможно использование нескольких ведомых шкивов и нескольких ремней. Шкивы жестко закреплены на ведущем и ведомом валах.

Основное назначение – передача механической энергии с понижением частоты вращения.

По принципу действия различают передачи трением (большинство передач) и зацеплением (зубчато-ременные). В зависимости от формы поперечного сечения ремня различают ременные передачи: плоские, клиновые , поликлиновые, круглые, квадратные. Клиновые, поликлиновые, зубчатые и быстроходные плоские ремни изготавливают бесконечно замкнутыми. Плоские ремни преимущественно выпускают конечными – в виде длинных лент.

Достоинства ременных передач трением: отсутствие смазочной системы, простота и низкая стоимость конструкции, предохранение от резких колебаний нагрузки и ударов, возможность передачи движения на значительные расстояния, защита от перегрузки за счет проскальзывания ремня по шкиву, плавность и низкая шумность работы.

Недостатки: малая долговечность ремней в быстроходных передачах; значительные габариты; непостоянство передаточного отношения (из-за проскальзывания ремней на шкивах); необходимость защиты ремня от попадания масла; значительные силы, действующие на валы и опоры.

Для определения передаточного отношения ременной передачи принимают, что ремень не вытягивается и не проскальзывает на шкивах. Такое допущение не вносит существенной погрешности в расчеты, поскольку линейная скорость [м/с] любой точки, лежащей на поверхности вращающегося тела (в нашем случае - ведущего шкива), определяется как

где – угловая скорость, рад/с; - диаметр шкива, м; - число оборотов в минуту, об/мин.

Так как любая точка ремня, совпадающая с рассматриваемой точкой ведущего шкива, движется с той же линейной скоростью (а значит, и те точки ремня, которые контактируют с ведомым шкивом, и совпадающие с ними точки ведомого шкива имеют ту же линейную скорость).

Соответственно также определяется и линейная скорость любой точки обода ведомого шкива: При этом отношение линейных скоростей и ведомого, и ведущего шкивов равно , или и, следовательно, или .

Передаточное отношение передачи выражается отношением диаметров ведомого и ведущего шкивов:

Углы и (см. рис. 5.2), соответствующие дугам, по которым касаются ремень и шкив, называются углами обхвата .

Поскольку ременная передача передает вращение за счет сил трения между ремнем и шкивом, ее работоспособность существенно зависит от углов обхвата, определяющим из которых является угол обхвата на меньшем шкиве. Его величина в первую очередь зависит от расстояния между центрами шкивов (межосевое расстояние) и передаточного отношения. Практика показала, что плоскоременная передача работает нормально, если угол обхвата не менее 120 градусов. Это требование выполняется, если соблюдаются следующие условия: межосевое расстояние не меньше удвоенной суммы диаметров шкивов.

Можно обеспечить работоспособность плоскоременной передачи и при больших передаточных отношениях, применив натяжной ролик 4 (см. рис. 5.3), который увеличит угол обхвата на меньшем шкиве.

Предельная окружная скорость плоскоременной передачи в зависимости от материала ремня лежит в пределах 20…40 м/с.

Более совершенным видом передачи движения гибкой связью является клиноременная, где на ободе шкивов сделаны канавки, в которые входит ремень, имеющий в поперечном сечении форму трапеции. В этих передачах полезная нагрузка передается за счет сил трения между боковыми поверхностями ремня и канавок шкивов. Трапециевидное сечение ремня за счет расклинивания увеличивает его сцепление со шкивом и повышает тяговую способность передачи. Это дает возможность осуществления более высоких передаточных отношений (до 7 и даже до 10), возможность применения при малых межцентровых расстояниях.

Если для плоскоременной передачи межцентровое расстояние

то для клиноременной передачи , что позволяет одной передачей осуществить вращение нескольких ведомых валов без применения натяжных роликов.

На кинематических схемах ременные передачи имеют соответствующие условные обозначения (на рис. 5.4, а с плоским, а на рис. 5.4, б - с клиновым ремнями).

В последнее время стали широко применяться зубчато-ременные передачи. На рабочей поверхности ремня имеются выступы - зубья, которые входят в зацепление с аналогичными зубьями на шкивах. Такие передачи работают без скольжения, что обеспечивает постоянство передаточного отношения.

В некоторых случаях применяют более сложную ременную передачу - многоступенчатую (рис. 5.5), состоящую из нескольких ступеней (пар шкивов).

Передаточные отношения отдельных ступеней ( , , ) выражаются через соотношения диаметров ведомых () и ведущих () шкивов. Применительно ко всей передаче - диаметр ведущего шкива, а - диаметр ведомого шкива, однако их отношение не будет искомым передаточным отношением всей передачи, так как эти шкивы не связаны единым ремнем.

Определим требуемое соотношение, приняв во внимание, что ведущий вал (не шкив!) каждой последующей ступени одновременно является ведомым валом предыдущей.

Передаточное отношение первой пары шкивов

Передаточное отношение второй пары шкивов

Так как шкивы диаметром и закреплены на одном валу, .

Передаточное отношение третьей пары шкивов

а , следовательно, .

Передаточное отношение всей передачи

Таким образом, передаточное отношение ременной многоступенчатой передачи равно произведению передаточных отношений отдельных ее ступеней.

Передачу механической энергии, осуществляемую гибкой связью посредством трения между ремнем и шкивом, называют ременной. Она состоит из двух шкивов 1 и 2 и ремня 3 (рис.15).

Рис. 15.

Классификация

1. В зависимости от формы поперечного сечения ремня различают следующие виды ременных передач (рис.15):

Плоскоременные (с прямоугольным профилем поперечного сечения ремня);

Клиноременные (с трапециевидным профилем поперечного сечения ремня);

Поликлиноременные (с бесконечными плоскими ремнями, имеющими продольные клиновые выступы-ребра на внутренней поверхности ремня, входящие в кольцевые клиновые канавки шкивов);

Круглоременные;

Зубчатые.

Рис. 16.

2. По взаимному расположению осей валов:

С параллельными осями (рис. 17, а , б );

С пересекающимися осями (рис. 17, г );

Со скрещивающимися (рис. 17, в ).


Рис. 17

3. По направлению вращения шкивов:

С одинаковым (рис. 17, а , в );

С противоположным (рис. 17, б ).

4. По способу создания натяжения ремня:

Простые (рис. 15);

С натяжным роликом (рис. 18);

С натяжным устройством.


Рис. 18.

Достоинства ременных передач :

Возможность передачи энергии на значительные расстояния: до 12…15 м - плоскими ремнями, до 6 м - клиновыми ремнями;

Простота и низкая стоимость конструкции;

Плавность и бесшумность хода, способность смягчать удары благодаря эластичности ремня и предохранять механизм от поломок при буксовании, вызванном перегрузкой;

Возможность передачи мощностей от долей киловатта до сотен киловатт (чаще до 50 кВт, реже до 300 кВт) при окружной скорости до 30 м/с;

Простота обслуживания и ухода;

Относительно высокий КПД: h = 0,91…0,98;

Передаточное отношение i ? 7 (обычно i ?4... 5).

Недостатки:

Непостоянство передаточного отношения вследствие упругого скольжения, меняющегося в зависимости от нагрузки;

Относительно большие габариты передачи и невысокая долговечность ремня (особенно в быстроходных передачах);

Вытягивание ремня в процессе эксплуатации передачи приводит к необходимости установки дополнительных устройств (натяжной ролик);

Большие нагрузки на валы и их опоры (подшипники).

Несмотря на перечисленные недостатки, ременные передачи по применению в промышленности и народном хозяйстве занимают второе место после зубчатых передач. В любой отрасли машиностроения и приборостроения можно встретить плоскоременную или клиноременную передачу: приводы насосов, вентиляторов, транспортеров, конвейеров, рольгангов и др.

Клиноременные и поликлиноременные передачи применяют при сравнительно больших передаточных отношениях, вертикальном и наклонном расположении параллельных осей валов, требовании малогабаритности передачи и меньших нагрузок на опоры валов, передаче энергии нескольким валам.

Круглоременные передачи предназначены в основном для передачи малых мощностей и потому имеют меньшее распространение (швейные машины, приборы, настольные станки и т.д.).

Зубчато-ременные передачи

Зубчатые (полиамидные) ремни сочетают в своей конструкции все преимущества плоских ремней и зубчатых зацеплений На рабочей поверхности ремней 4 имеются выступы, которые входят в зацепление в выступами на шкивах 1,2 и З. Полиамидные ремни пригодны для высокоскоростных передач, а также для передач с небольшим межосевым расстоянием. Они допускают значительные перегрузки, очень надежны и прочны.

Передаточное отношение ременных передач:

i= щ1 / щ2=n 1 /n 2 =D 2 /D 1 (1- e)

где щ1 и щ2 - угловые скорости на ведущем и ведомом валах;

n 1 и n 2 - частоты вращения валов;

D 2 и D 1 - диаметры ведущего и ведомого шкивов;

e--=?0,01…0,02 - коэффициент упругого скольжения.

Сшивку применяют для ремней всех типов. Она производится посредством жильных струн или ушивальниками-ремешками из сыромятной кожи III. Более совершенной и надежной считают сшивку встык жильными струнами с наклонными проколами IV.

Критерии работоспособности ременных передач

Основными критериями работоспособности ременных передач являются тяговая способность ремня и его долговечность. Основным расчетом является расчет по тяговой способности, который сводится к определению площади поперечного сечения ремня, обеспечивающего передачу необходимого усилия. Долговечность ремня, которая определяется в основном его усталостной прочностью, зависит не только от величины напряжений, но и от характера и частоты цикла изменения этих напряжений (или числа пробегов ремня)

n--=--u/----l --Ј--,

где u--- окружная скорость, м/с;

l - длина ремня, м;

[n] - допускаемое число пробегов ремня:

Для плоских ремней Ј?5; - для клиновых --10 .

Практика показывает, что при соблюдении необходимых рекомендаций долговечность ремней составляет 2000…3000 часов.

Конструкции основных элементов ременных передач

Ремень является тяговым органом, от качества которого зависят долговечность и нормальная работа передачи. К нему предъявляют следующие требования: достаточная прочность, надежность и долговечность, невысокая стоимость и не дефицитность материала ремня; высокая тяговая способность и эластичность; достаточно высокий коэффициент трения между ремнем и шкивом.

Плоские приводные ремни представляют собой гибкую конечную или реже бесконечную ленту из прорезиненной хлопчатобумажной ткани или кожи.

Кожаные ремни обладают высокой тяговой способностью упругостью и эластичностью. Из-за дефицитности и высокой стоимости их рекомендуют к применению только в ответственных передачах с часто изменяющимися нагрузками и высокими скоростями до 40 м/с.

Резинотканевые ремни при спокойных нагрузках обладают хорошей тяговой способностью и упругостью, малодефицитны, а потому широко распространены. Они работают в широком диапазоне мощностей (до 50 кВт) со значительными скоростями (до 30 м/с).

изготовляют бесконечными (бесшовными) в специальных пресс-формах. Они состоят из крученого прорезиненного хлопчатобумажного или синтетического шнура (корда), расположенного в области нейтрального слоя ремня, резинотканевого или резинового слоя, расположенного над кордом и работающего на растяжение при изгибе ремня, резинового слоя, расположенного под кордом и работающего на сжатие при изгибе и обертки из прорезиненной ткани. Клиновые ремни подразделяются на кордтканевые (рис. 19,а) и корд-шнуровые (рис.19,б).

Рис. 19.

Применение клинового ремня позволило увеличить тяговую способность передачи за счет повышения трения и сцепление ремня со шкивом по сравнению с плоскоременной передачей.

В поликлиновых ремнях (стандарта нет) несущий слой выполняют в виде кордшнура из химических волокон (вискоза, лавсан, стекловолокно).

Эти ремни сочетают достоинства плоских ремней - монолитность и гибкость и клиновых - повышенное сцепление со шкивом.

Зубчатые ремни способны передавать энергию при неизменном передаточном отношении с высокими окружными скоростями и мощность до сотен киловатт. Эти ремни изготовляют из армированного металлическим тросом неопрена, значительно реже используют пластмассу (полиуретан).

Шкивы ременных передач изготовляют из стали, алюминиевых сплавов или текстолита при u-->?30 м/с. Наиболее распространенным материалом для изготовления шкивов при u--Ј?30 м/с является серый чугун СЧ 15 и СЧ 21, при u--Ј?25 м/с - СЧ 12

Рис.20

Форму канавки шкива (рис. 20) в клиноременной передаче выполняют так, чтобы между ремнем и ее основанием был гарантированный зазор, при этом рабочими являются боковые грани ремня. В то же время ремень не должен выступать за пределы наружного диаметра шкива, иначе своими острыми кромками канавка будет быстро разрушать ремень.

Ременная передача - это передача механической энергии при помощи гибкого элемента (ремня) за счёт сил тре-ния или сил зацепления (зубчатые ремни). Состоит из ведущего и ведомого шкивов и ремня (одного или нескольких). Ременная передача относится к передачам трением с гибкой связью.

Классификация ременных передач

В зависимости от формы поперечного сечения ремня ременные передачи делят на:
плоскоременные (а);
клиноременные (с трапециевидным профилем) (б);
круглоременные (с круглым профилем) (в);
поликлиноременные (г);
передачи с зубчатыми ремнями.
В современном машиностроении наибольшее применение имеют клинове и поликлинове ремни. Передачи с круг-лым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

В зависимости от назначения передачи и взаимного расположения осей:
открытые с параллельными осями валов и вращением шкива в одном направлении;
перекрестные с параллельными осями валов и вращением шкивов в противоположных направлениях;
полу-перекрестные со скрещивающимися осями;
угловые со скрещивающимися и пересекающимися осями валов.

Достоинства и недостатки ременных передач

Достоинства ременных передач:
Простота конструкции и малая стоимость.
Возможность передачи мощности на значительные расстояния (до 15 метров).
Плавность и бесшумность работы.
Смягчение вибрации и толчков вследствие упругой вытяжки ремня.
Недостатки ременных передач:
Большие габаритные размеры, в особенности при передаче значительных мощностей.
Малая долговечность ремня в быстроходных передачах.
Большие нагрузки на валы и подшипники от натяжения ремня.
Непостоянное передаточное число из-за неизбежного упругого проскальзывания ремня.
Неприменимость во взрывоопасных местах вследствие электризации ремня.
Недостатки ременных передач (в сравнении с цепной передачей):
большие габариты;
малая несущая способность;
проскальзывание (не относится к зубчатым ремням);
малая долговечность.
Достоинства ременных передач (в сравнении с цепной передачей):
плавность работы;
бесшумность;
компенсация перегрузок;
отсутствие в необходимости смазки;
малая стоимость;
легкий монтаж;
возможность работы на высоких окружных скоростях;
при выходе из строя, нет повреждений.

Применение ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по кон-структивным соображениям межосевое расстояние a должно быть достаточно большим, а передаточное число u не строго постоянным (в приводах станков, транспортеров, дорожных и строительных машин и т.п.)
Мощность, передаваемая ременной передачей, обычно до 50 кВт и в редких случаях достигает 1500 кВт. Скорость ремня колеблется в пределах 5…50 м/с, а в сверхскоростных передачах может достигать 100 м/с.
Ограничение мощности нижнего предела скорости вызвано большими габаритами передачи.

Шкивы ременных передач

Шкивы выполняют из стали или чугуна. В быстроходных передачах применяют шкивы из алюминиевых сплавов или текстолита. Форма рабочей поверхности обода шкива зависит от вида ремня. Для плоских ремней шкивы имеют гладкую рабочую поверхность. Для центрирования ремня поверхность ведомого шкива делается выпуклой, а ведуще-го – цилиндрической. Для клиновых ремней конструкция шкивов и размеры обода зависят от числа и размера канавок ремней.

Ремни ременных передач

Материал плоского приводного ремня должен обладать достаточной прочностью, изностойкостью, эластичностью и долговечностью, хорошо сцепляться со шкивами и иметь низкую стоимость.

Для плоскоременных передач применяют следующие типы ремней:
Кожаные ремни - обладают хорошей тяговой способностью, хорошо переносят колебания и нагрузки, но они дороги и дефицитны.
Прорезиненные ремни - состоят из нескольких слоев хлопчатобумажной ткани соединенных собой вулкани-зированной резиной. Резина обеспечивает работу ремня, как единого целого, защищает ткань от повреждений и по-вышенного коэффициента трения, но разрушается от попадания масла, бензина и щелочей.
Хлочато-бумажные ремни – изготавливают как цельную ткань с несколькими слоями основы, пропитанных специальным составом (битум, озакериб). Эти ремни легкие и гибкие, могут работать на шкивах малых диаметров с большими скоростями, но обладают меньшей долговечностью и тяговой способностью.
Шерстяные ремни – ткань с многослойной шерстяной основой и хлопчато-бумажным утком, пропитанные специальным составом (сурик на олифе). Обладают значительной упругостью, менее чувствительны к температурной влажности и кислотам, но обладают низкими тяговыми способностями.
Пленочные ремни новый тип ремней из пластмасс на основе полиамидных смол, армированных кордом из капрона или лавсана. Обладают высокими статической прочностью и сопротивлением усталости. Применяются для передачи с высокой мощностью и быстроходностью.
Для клиноременной передачи применяют прорезиненные ремни двух конструкций: с несущим элементом из нескольких слоев ткани или слоя шнура навитого по спирали, завулканизированных в резину, с тканевой оберткой или без нее.

Ре­мённая передача относится к механическим передачам с гибкой связью, в ко­торых гибкими промежуточными звеньями могут быть ремни, цепи или кана­ты. Ремённые передачи плоским ремнём получили распространение в XIX веке для привода текстильных и токарных станков. Затем были предложены клино­вые и зубчатые ремни. По принципу работы различают ремённые передачи трением (большинство передач) и зацеплением (зубчато-ремённые передачи).

Приступая к изучению этой темы, прежде всего, следует уяснить отличие ремённой передачи от всех других. Это отличие состоит в том, что при увели­чении нагрузки основная деталь передачи - ремень - до конца использует свою тяговую способность, определяемую силой трения между ремнём и шкивом, а затем начинается буксование шкива по ремню. В результате сильного нагрева ремень может быть разрушен и передача выходит из строя.

Ремённая передача (рис. 102,а)состоит из двух шкивов 1 и 2, ремня 3 и на­тяжного устройства 4. Механическая энергия от ведущего шкива к ведомому шкиву передаётся за счёт сил трения, возникающих при надевании ремня на шкивы с предварительным (монтажным) натяжением Fo. По форме поперечно­го сечения ремней различают передачи с плоским (рис. 102,б), клиновым (рис. 102, в), поликлиновым (рис. 102, г) и зубчатым ремнём.

Обычно ремённые передачи используют в качестве первой от двигателя ступени привода. В этом случае её габариты и масса оказываются сравнительно небольшими.

Достоинства ремённой передачи трением: возможность работы с высокими скоростями, предохранение узлов привода от перегрузок, простота конструкции, бесшумность при работе, дешевизна.

Недостатки: малая долговечность ремня в быстроходных передачах, большие габариты передачи, зна­чительные усилия на валы и опоры.

К материалам ремней предъявляются требования высокой прочности при переменных напряжениях, износостойкости, максимального коэффициента трения по рабочей поверхности шкива, минимальной изгибной жёсткости. Область применения плоскоремённых передач - быстроходные переда­чи при высоких требованиях к плавности работы.

Рис.102. Ремённая передача (а) и форма поперечного сечения ремней: б - плоского, в - клинового, г – поликлинового.

Высокоскоростные плоскоремённые передачи применяют как ускоритель­ные в приводах быстроходных технологических машин, например, шлифо­вальных станков, центрифуг и др. При скорости ремня v > 30 м/с передача мощности может и должна осуществляться только плоскими тонкими бесшов­ными (бесконечными) ремнями в виде замкнутой ленты определённой длины. Никакие сшивки или другие виды соединения концов ремня высокоскоростных передач недопустимы, так как ремни неизбежно рвутся от динамических воздействий в местах соединения. Быстроходные ремни выполняют тонкими из соображений долговечности, требующей минимальных напряжений изгиба, от которых, главным образом, при большом числе перегибов ремня в секунду за­висит усталостная прочность материала ремня.

Современными типами плоских бесконечных ремней являются синтетические тканые (рис. 103, а, вверху) и прорезиненные кордшнуровые ремни (рис. 103, а, внизу). Благодаря высокой упругости материала они хорошо амортизи­руют колебания нагрузки и вибрации деталей. Ширина синтетических тканых ремней от 10 до 100 мм, толщина ремня 0,8 или 1 мм, диапазон длин от 250 до 3350 мм. Допустимая скорость до 75 м/с. Ширина прорезиненных кордошнуровых ремней от 30 до 60 мм, толщина 2,8 мм, внутренняя длина от 500 до 5600 мм. Допустимая скорость до 35 м/с. При расчёте плоскоремённой передачи определяют размеры поперечного сечения ремня. Изменением ширины плоского ремня b р можно варьировать нагрузочную способность передачи.

Рис. 103. Конструкции поперечного сечения тяговых ремней: а - плоских, б - клиновых, в - поликлиновых

Клиноремённые передачи имеют универсальное назначение. Клиновые ремни обеспечивают большую тяговую способность и меньшие габариты передачи для одинаковой мощности по сравнению с передачами плоским ремнём. Распространение получили кордтканевые и кордшнуровые ремни (рис. 103, б)слойной конструкции, изготовляемые бесконечными. Клиновые ремни в пере­даче применяют от 2 до 8 штук в комплекте, чтобы варьировать нагрузочную способность передачи. Из-за «рассеяния» длин ремней нагрузка между ними в комплекте распределяется неравномерно, поэтому в клиноремённых передачах требуется подбирать ремни с минимальным отклонением по длине. Клиновые ремни выполняют с углом φ = 36...40°. Отношение большего основания трапециевидного сечения к высоте b p /h ≈ 1,6 (ремни нормального сечения) или b p /h ≈ 1,2 (узкие клиновые ремни). Узкие клиновые ремни вслед­ствие большей гибкости дают возможность заменить ремни нормальных сече­ний, уменьшить количество ремней в комплекте и размеры передачи.

Поликлиновой ремень (рис. 103, е) - плоский бесконечный ремень со шну­ровым кордом и клиновыми выступами на нижней стороне. Он имеет строго фиксированное и постоянное положение нейтрального слоя, а также ширину и длину рабочих клиньев. Это гарантирует спокойную работу, позволяет приме­нить шкивы меньших диаметров и работать при скоростях до 40 м/с. Ширина поликлинового ремня при передаче такой же мощности значительно меньше ширины комплекта обычных клиновых ремней.

Тип клинового ремня - ремень нормального сечения (Z, А, В, С, D, Е, ЕО), узкий клиновой ремень (сечения УО, УА, УБ или УВ) или поликлиновой ре­мень (сечения К, Л или М) - назначают в зависимости от величины вращающе­го момента на ведущем шкиве Т 1 , Н∙м. При расчёте клиноремённой передачи определяют не размеры поперечного сечения ремня, а количество клиновых ремней z p в комплекте или количество клиньев z поликлинового ремня.

Зубчато-ремённая передача (рис. 104) соединяет в себе достоинства ре­мённых и цепных передач. По названию и конструкции тягового органа эту пе­редачу относят к ремённым, а по принципу работы - к цепным передачам. Та­кая передача компактна, работает плавно и почти бесшумно, не требует смазы­вания и тщательного ухода. Принцип зацепления устраняет проскальзывание ремня на шкивах, нет необходимости и в большом предварительном натяжении ремня.