K a t teh meh ременные передачи. Черчение

Работы по переборке электродвигателя подходят к завершению. Приступаем к расчёту шкивов ремённой передачи станка. Немного терминологии по ремённой передаче.

Главными исходными данными у нас будут три значения. Первое значение это скорость вращения ротора (вала) электродвигателя 2790 оборотов в секунду. Второе и третье это скорости, которые необходимо получить на вторичном валу. Нас интересует два номинала 1800 и 3500 оборотов в минуту. Следовательно, будем делать шкив двухступенчатый.

Заметка! Для пуска трёхфазного электродвигателя мы будем использовать частотный преобразователь поэтому расчётные скорости вращения будут достоверными. В случае если пуск двигателя осуществляется при помощи конденсаторов, то значения скорости вращения ротора будут отличаться от номинального в меньшую сторону. И на этом этапе есть возможность свести погрешность к минимуму, внеся поправки. Но для этого придётся запустить двигатель, воспользоваться тахометром и замерить текущую скорость вращения вала.

Наши цели определены, переходим выбору типа ремня и к основному расчёту. Для каждого из выпускаемых ремней, не зависимо от типа (клиноременный, поликлиновидный или другой) есть ряд ключевых характеристик. Которые определяют рациональность применения в той или иной конструкции. Идеальным вариантом для большинства проектов будет использование поликлиновидного ремня. Название поликлиновидный получил за счет своей конфигурации, она типа длинных замкнутых борозд, расположенных по всей длине. Названия ремня происходит от греческого слова «поли», что означает множество. Эти борозды ещё называют по другому - рёбра или ручьи. Количество их может быть от трёх до двадцати.

Поликлиновидный ремень перед клиноременным имеет массу достоинств, таких как:

  • благодаря хорошей гибкости возможна работа на малоразмерных шкивах. В зависимости от ремня минимальный диаметр может начинаться от десяти - двенадцати миллиметров;
  • высокая тяговая способность ремня, следовательно рабочая скорость может достигать до 60 метров в секунду, против 20, максимум 35 метров в секунду у клиноременного;
  • сила сцепления поликлинового ремня с плоским шкивом при угле обхвата свыше 133° приблизительно равна силе сцепления со шкивом с канавками, а с увеличением угла обхвата сила сцепления становится выше. Поэтому для приводов с передаточным отношением свыше трёх и углом обхвата малого шкива от 120° до 150° можно применять плоский (без канавок) больший шкив;
  • благодаря легкому весу ремня уровни вибрации намного меньше.

Принимая во внимание все достоинства поликлиновидных ремней, мы будем использовать именно этот тип в наших конструкциях. Ниже приведена таблица пяти основных сечений самых распространённых поликлиновидных ремней (PH, PJ, PK, PL, PM).

Обозначение PH PJ PK PL PM
Шаг ребер, S, мм 1.6 2.34 3.56 4.7 9.4
Высота ремня, H, мм 2.7 4.0 5.4 9.0 14.2
Нейтральный слой, h0, мм 0.8 1.2 1.5 3.0 4.0
Расстояние до нейтрального слоя, h, мм 1.0 1.1 1.5 1.5 2.0
13 20 45 75 180
Максимальная скорость, Vmax, м/с 60 60 50 40 35
Диапазон длины, L, мм 1140…2404 356…2489 527…2550 991…2235 2286…16764

Рисунок схематичного обозначения элементов поликлиновидного ремня в разрезе.

Как для ремня, так и для ответного шкива имеется соответствующая таблица с характеристиками для изготовления шкивов.

Сечение PH PJ PK PL PM
Расстояние между канавками, e, мм 1,60±0,03 2,34±0,03 3,56±0,05 4,70±0,05 9,40±0,08
Суммарная погрешность размера e, мм ±0,3 ±0,3 ±0,3 ±0,3 ±0,3
Расстояние от края шкива fmin, мм 1.3 1.8 2.5 3.3 6.4
Угол клина α, ° 40±0,5° 40±0,5° 40±0,5° 40±0,5° 40±0,5°
Радиус ra, мм 0.15 0.2 0.25 0.4 0.75
Радиус ri, мм 0.3 0.4 0.5 0.4 0.75
Минимальный диаметр шкива, db, мм 13 12 45 75 180

Минимальный радиус шкива задаётся не спроста, этот параметр регулирует срок службы ремня. Лучше всего будет если немного отступить от минимального диаметра в большую сторону. Для конкретной задачи мы выбрали самый распространённый ремень типа «РК». Минимальный радиус для данного типа ремней составляет 45 миллиметров. Учтя это, мы будем отталкиваться ещё и от диаметров имеющихся заготовок. В нашем случае имеются заготовки диаметром 100 и 80 миллиметров. Под них и будем подгонять диаметры шкивов.

Начинаем расчёт. Приведём ещё раз наши исходные данные и обозначим цели. Скорость вращения вала электродвигателя 2790 оборотов в минуту. Ремень поликлиновидный типа «РК». Минимальный диаметр шкива, который регламентируется для него, составляет 45 миллиметров, высота нейтрального слоя 1,5 миллиметра. Нам нужно определить оптимальные диаметры шкивов с учётом необходимых скоростей. Первая скорость вторичного вала 1800 оборотов в минуту, вторая скорость 3500 оборотов в минуту. Следовательно, у нас получается две пары шкивов: первая 2790 на 1800 оборотов в минуту, и вторая 2790 на 3500. Первым делом найдём передаточное отношение каждой из пар.

Формула для определения передаточного отношения:

, где n1 и n2 - скорости вращения валов, D1 и D2 - диаметры шкивов.

Первая пара 2790 / 1800 = 1.55
Вторая пара 2790 / 3500 = 0.797

, где h0 нейтральный слой ремня, параметр из таблицы выше.

D2 = 45x1.55 + 2x1.5x(1.55 - 1) = 71.4 мм

Для удобства расчётов и подбора оптимальных диаметров шкивов можно использовать онлайн калькулятор.

Инструкция как пользоваться калькулятором . Для начала определимся с единицами измерений. Все параметры кроме скорости указываем в милиметрах, скорость указываем в оборотах в минуту. В поле «Нейтральный слой ремня» вводим параметр из таблицы выше столбец «PК». Вводим значение h0 равным 1,5 миллиметра. В следующем поле задаём скорость вращения валя электродвигателя 2790 оборотов в минуту. В поле диаметр шкива электродвигателя вводим значение минимально регламентируемое для конкретного типа ремня, в нашем случае это 45 миллиметров. Далее вводим параметр скорости, с которым мы хотим, чтобы вращался ведомый вал. В нашем случае это значение 1800 оборотов в минуту. Теперь остаётся нажать кнопку «Рассчитать». Диаметр ответного шкива мы получим соответствующем в поле, и оно составляет 71.4 миллиметра.

Примечание: Если необходимо выполнить оценочный расчёт для плоского ремня или клиновидного, то значением нейтрального слоя ремня можно пренебречь, выставив в поле «ho» значение «0».

Теперь мы можем (если это нужно или требуется) увеличить диаметры шкивов. К примеру, это может понадобится для увеличения срока службы приводного ремня или увеличить коэффициент сцепления пара ремень-шкив. Также большие шкивы иногда делают намеренно для выполнения функции маховика. Но мы сейчас хотим максимально вписаться в заготовки (у нас имеются заготовки диаметром 100 и 80 миллиметров) и соответственно подберём для себя оптимальные размеры шкивов. После нескольких переборов значений мы остановились на следующих диаметрах D1 - 60 миллиметров и D2 - 94,5 миллиметров для первой пары.

Обычно клиноременная передача представляет собой открытую передачу с одним или несколькими ремнями. Рабочими поверхностями ремня являются его боковые стороны.

По сравнению с плоскоременными, клиноременные передачи обладают большей тяговой способностью, имеют меньшее межосевое расстояние, допускают меньший угол обхвата малого шкива и большие передаточные числа (и ≤ 10). Однако стандартные клиновые ремни не допускают скорость более 30 м/с из-за возможности крутильных колебаний ведомой системы, связанных с неизбежным различием ширины ремня по его длине и, как следствие, непостоянством передаточного отношения за один пробег ремня. У клиновых ремней большие потери на трение и напряжения изгиба, а конструкция шкивов сложнее.

Клиноременные передачи широко используют в индивидуальных приводах мощностью до 400 кВт. КПД клиноременных передач η= 0,87...0,97.

Поликлиновые ременные передачи не имеют большинства недостатков, присущих клиноременным, но сохраняют достоинства последних. Поликлиновые ремни имеют гибкость, сравнимую с гибкостью резинотканевых плоских ремней, поэтому они работают более плавно, минимальный диаметр малого шкива передачи можно брать меньшим, передаточные числа увеличить до и ≤ 15, а скорость ремня – до 50 м/с. Передача обладает большой демпфирующей способностью.

Клиновые и поликлиновые ремни . Клиновые приводные ремни выполняют бесконечными из резинотканевых материалов трапецеидального сечения с углом клина φ 0 = 40°. В зависимости от отношения ширины b 0 большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений (b 0 /h ≈ 1,6); узкие (b 0 /h ≈ 1,2); широкие (b 0 /h ≈ 2,5 и более; применяют для клиноременных вариаторов).

В настоящее время стандартизованы клиновые ремни нормальных сечений , предназначенные для приводов станков, промышленных установок и стационарных сельскохозяйственных машин. Основные размеры и методы контроля таких ремней регламентированы ГОСТ 1284.1 – 89; обозначения сечений показаны на рис. 1.45. Ремни сечения ЕО применяют только для действующих машин и установок. Стандартные ремни изготовляют двух видов: для умеренного и тропического климата, работающих при температуре воздуха от минус 30 до плюс 60°С, и для холодного и очень холодного климата, работающих при температуре от минус 60 до плюс 40°С. Ремни сечений А, В и С для увеличения гибкости могут изготовляться с зубьями (пазами) на внутренней поверхности, полученными нарезкой или формованием (рис. 1.46, в ). Клиновые ремни (рис.1.46, а ,б ) состоят из резинового или резинотканевого слоя растяжения 1, несущего слоя 2 на основе материалов из химических волокон (кордткань или кордшнур), резинового слоя сжатия 3 и оберточного слоя прорезиненной ткани 4. Сечение ремня кордтканевой (а ),кордшнуровой (б )конструкции показаны на рис.1.46. Более гибки и долговечны кордшнуровые ремни, применяемые в быстроходных передачах. Допускаемая скорость для ремней нормальных сечений υ < 30 м/с.

Технические условия на ремни приводные клиновые нормальных сечений регламентированы ГОСТ 1284.2 – 89, а передаваемые мощности – ГОСТ 1284.3 – 89.

Кроме вышеуказанных приводных клиновых ремней стандартизованы: ремни вентиляторные клиновые (для двигателей автомобилей, тракторов и комбайнов) и ремни приводные клиновые (для сельскохозяйственных машин).

При необходимости работы ремня с изгибом в двух направлениях применяют шестигранные (сдвоенные клиновые) ремни.

Весьма перспективны узкие клиновые ремни , которые передают в 1,5–2 раза большие мощности, чем ремни нормальных сечений. Узкие ремни допускают меньшие диаметры малого шкива и работают при скоростях до 50 м/с; передачи получаются более компактными. Четыре сечения этих ремней УО(SPZ), УА(SРА), УБ(SPB), УВ(SPC) заменяют семь нормальных сечений. В скобках даны обозначения по ИСО.

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38 605 205 – 95.

Следует отметить, что в клиноременных передачах с несколькими ремнями из-за разной длины и неодинаковых упругих свойств нагрузка между ремнями распределяется неравномерно. Поэтому в передаче не рекомендуется использовать более 8...12 ремней.

Поликлиновые ремни (см. рис.1.43, г ) представляют собой бесконечные плоские ремни с ребрами на нижней стороне, работающие на шкивах с клиновыми канавками. По всей ширине ремня расположен высокопрочный синтетический шнуровой корд; ширина такого ремня в 1,5 – 2 раза меньше ширины комплекта ремней нормальных сечений при одинаковой мощности передачи.

Поликлиновые ремни пока не стандартизованы; на основании нормали изготовляют три сечения кордшнуровых поликлиновых ремней, обозначаемых К, Л и М, с числом ребер от 2 до 50, длиной ремня от 400 до 4000 мм и углом клина φ 0 = 40°.

По сравнению с плоскоременными, клиноременные передачи обладают значительно большей тяговой способностью за счет повышенного сцепления, обусловленного приведенным коэффи­циентом трения f  " между ремнем и шкивом.

Как известно из рассматриваемой в теоретической механике теории трения клинчатого ползуна:

f  " =f  /sin(α/2),

где f – коэффициент трения на плоскости (для прорезиненной ткани по чугунуf =0,3); α– угол профиля канавки шкива.

Приняв α= φ 0 = 40°, получим:

f  " =f  /sin20° ≈ 3f .

Таким образом, при прочих равных условиях клиновые ремни способны передавать в три раза большую окружную силу, чем плоские.

Фрикционные передачи предназначены для передачи вращательного движения (передачи энергии). Основаны такие передачи на использовании силы трения между колёсами фрикционного механизма. При рассмотрении фрикционных передач различают три вида трения между деталями:
  • Сухое трение - осуществляется при взаимном относительном движении двух очищенных и высушенных твёрдых тел, находящихся в естественном контакте друг с другом;
  • Граничное трение - при таком виде передачи на соприкасающиеся детали наносится тонкий слой специальной смазки известной молекулярной структуры;
  • Жидкостное трение - при таком виде передачи непосредственного соприкосновения деталей не происходит, а поверхности катков разделены слоем смазки, и трение зависит от вязкостного сопротивления самой смазки.
  • Для фрикционных передач характерно наличие дополнительного элемента - пружины, которая создаёт необходимую силу прижатия катков.

    Катки прижимаются друг к другу силой Fпр, в месте контакта катков создаётся сила трения Ff достаточная для окружной силы Fr (окружное усилие). Для нормальной работы передачи должно выполняться условие Ff >= Fr. Несоблюдение этого условия приводит к буксованию и быстрому износу катков. Величина Ff должна быть больше величины Fr на величину коэффициента запаса сцепления B, который принимают равным B = 1,25...2,0. Значения коэффициента трения f между катками в среднем:

  • сталь или чугун по коже или ферродо (ферродо - название фрикционного термостойкого композитного материала) насухо f = 0,3;
  • то же в масле f = 0,1;
  • сталь или чугун по стали или чугуну насухо f = 0,15;
  • то же в масле f = 0,07.

  • Виды фрикционных передач
    Фрикционные передачи такого типа бывают как открытые, так и закрытые. В открытых передачах сцепление обычно сухое, а в закрытых сцепление осуществляется в масле или другой фрикционной жидкости.


    Во фрикционных передачах имеется как минимум два колеса, одно из которых является ведущим (передающим), а второе ведомым (принимающим). Отношение диаметров ведущего колеса (D1 на рисунке) к ведомому колесу (D2 на рисунке) называется передаточным отношением i = D1/D2.
    Если i > 1 то передача считается повышающей, то есть число оборотов колеса D2 больше числа оборотов колеса D1 на величину i. Но при этом теряется мощность и на колесе D2 она ниже чем на колесе D1, примерно на величину i. Например, если диаметр D1 = 100 мм, а диаметр D2 = 50 мм, то I = 100/50 = 2. Соответственно если колесо D1 имеет частоту вращения 1000 об/мин, то частота вращения колеса D2 будет 1000 * 2 = 2000 об/мин.
    Если величина I
    При расчётах конических передач геометрические диаметры принимаются равными средним диаметрам колёс - D1 и D2 на рисунке.
    Часто при расчётах фрикционных передач используют величину - угловая скорость. Угловая скорость измеряется в величинах - радиан/секунда, то есть за 1 секунду колесо делает поворот на 1 радиан. 1 радиан = 57,2958 градусов. Следовательно, при частоте вращения 1 об/сек угловая скорость будет 6,2832 рад/сек.

    Для расчёта геометрических, кинематических и силовых соотношений во фрикционных передачах удобно воспользоваться онлайн калькулятором на сайте "Метизы"

    К достоинствам фрикционных передач можно отнести:

  • Простота изготовления тел качения;
  • Равномерность вращения и бесшумность работы;
  • За счёт возможностей проскальзывания передача обладает предохранительными свойствами.
    Недостатки фрикционных передач:
  • Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
  • Необходимость обеспечения прижима с использованием пружин.
  • Ременные передачи

    В общем виде, ременная передача, состоит из ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных ремнём, надетым на шкивы с натяжением. Вращение ведущего шкива преобразуется во вращение ведомого благодаря трению, развиваемому между ремнем и шкивами.

    Простые ременные передачи

    Изображение Обозначение / Комментарий
    Передача с круглым профилем ремня. Обеспечивает хорошее сцепление за счёт совпадения формы сечения ремня и углубления на шкиве, при этом, позволяет сократить толщину шкива. Используется такая передача, в основном в миниатюрных приборах точной автоматики, таких как лентопротяжные механизмы, верньеры, системы автоматизированного регулирования.
    Ремни в таких передачах часто называют пассики. Пассики обычно изготавливаются из резины.
    Плоскоременная передача. Обеспечивает хорошее сцепление за счёт ширины ремня. Передача простая в изготовлении, но требует широких шкивов и строгой параллельности их осей.
    Трапецеидальная (или клиноременная) передача имеет профиль ремня в виде трапеции с углом в 40°. Имеет хорошее сцепление при небольшой ширине ремня. Такие передачи часто используют в высоконагруженных силовых установках, таких, например как электропривод металлорежущих станков, лифтов, конвейеров и тому подобных. Часто, для увеличения сцепления и повышения надёжности на шкивах делается несколько канавок под ремни и на шкивы одевается несколько ремней. Повреждение одного из ремней не приведёт к критическому сбою в работе всей передачи. Клиновидные ремни для приводов общего назначения стандартизированы по ГОСТ 1284.1-89 и ГОСТ 1284.2-89.

    Для натяжения ремней (чаще плоских) используют подвижную станину, в которой закреплено одно из колёс передачи:

    Широкое распространение получили механизмы натяжения ремня подпружиненным роликом:

    К достоинствам ременных передач можно отнести:

  • простота изготовления и обслуживания;
  • плавность работы, бесшумность;
  • малая стоимость;
  • возможность работы с высокими частотами вращения;
  • возможность автоматического предохранения от перегрузки за счет проскальзывания ремня;
  • отсутствие какой либо смазки;
  • возможность передачи движения на значительные расстояния.
  • К недостаткам можно отнести:

  • повышенные нагрузки на валы и опоры;
  • необходимость применения натяжителя ремня;
  • низкая долговечность ремня.
  • Передаточное число в ременных передачах рассчитывается как отношение диаметра ведущего шкива к ведомому i = D1/D2. Если в передаче участвует большее число колёс, например три, то расчёт передаточных отношений, а соответственно и числа оборотов, ведется относительно ведущего шкива.


    Например, примем для шкивов следующие диаметры: D1 = 120 мм, D2 = 30 мм и D3 = 160 мм.
    Пусть шкив D1 будет ведущим. Тогда:
    i1 = D1/D2 = 120/30 = 4;
    i2 = D1/D3 = 120/160 = 0,75.

    Примем число оборотов ведущего шкива равным 1200 об/мин. Тогда число оборотов второго шкива n2 = 1200 * 4 = 4800 об/мин, третьего шкива n3 = 1200 * 0,75 = 900 об/мин.

    Для расчёта передач удобно воспользоваться расчётными формулами на сайте

    Просмотр: эта статья прочитана 23721 раз

    Pdf Выберите язык... Русский Украинский Английский

    Краткий обзор

    Полностью материал скачивается выше, предварительно выбрав язык


    Механизмы с гибкими звеньями

    Для передачи движения между сравнительно далеко расположенными друг от друга звеньями применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. Передачи с гибкими звеньями применяются в качестве силовых в машинах общего и специального машиностроения (при мощностях до 50 кВт, передаточных чисел до 10, при окружных скоростях до 30 м/с), а также в приборах и аппаратах точной механики (для устройств вычерчивания кривых, регистрирующих приборов, шкальных механизмов и т.п.).

    В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провод, стальная лента, цепи различных конструкций.

    Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.

    Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: натяжные ролики и пружины, противовесы и т.п.

    Виды передач:

    1 По способу соединения гибкого звена с остальными:
    фрикционные;

    • с непосредственным соединением;
    • с зацеплением.

    2 По взаимному расположению валов и направлению их вращения:

    • открытые;
    • перекрестные;
    • полуперекрестные.

    Ременные передачи

    Принцип действия и классификация

    Передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего.

    В зависимости от формы поперечного перереза ремня различают передачи:

    • плоскоременную;
    • клиноременную;
    • круглоременную.

    Преимущества:

    • возможность передачи движения на значительные расстояния (до 15 м и более);
    • плавность и бесшумность работы;
    • защита механизмов от колебаний нагрузки вследствие упругости ремня;
    • защита механизмов от перегрузки за счет возможного проскальзывания ремня;
    • простота конструкции и эксплуатации (передача не требует смазки).

    Недостатки:

    • повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колес);
    • непостоянство передаточного отношения вследствие проскальзывание ремня;
    • повышенная нагрузка на валы и их опоры, связанное с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
    • низкая долговечность ремней (1000-5000 часов).

    Область применения

    Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях. Передача передает мощность до 50 кВт. В комбинации с зубчатой передачей ременную передачу устанавливают на быстроходную степень, как менее нагруженную.

    В современном машиностроении наибольшее распространение имеют клиновые ремни. Применение плоских ремней старой конструкции сократилось. Плоские ремни новой конструкции (клепочные из пластмасс) получают распространение в высокоскоростных передачах. Круглые ремни применяются только для малых мощностей: в приборах, бытовых машинах и т.п.

    В случае отсутствия устройства автоматического натяжения ремень вытягивается, возникает проскальзывание.

    Силы в зацеплении

    • сила натяжения рабочей ветви;
    • сила натяжения холостой ветви;
    • окружная сила;
    • сила предварительного натяжения;
    • центробежная сила;
    • сила от изгиба ремня.

    Критерии трудоспособности и расчета ременных передач:

    1. тяговая способность, обусловленная силой трения между ремнем и шкивом;
    2. долговечность ремня, который ограничивается разрушением ремня от усталости.

    Основным расчетом ременных передач является расчет по тяговой способности. Долговечность ремню учитывается при расчетах путем выбора основных параметров передачи согласно рекомендациям.

    Тяговая способность передачи характеризуется значением максимально допустимой окружной силы или полезного напряжения. Допустимое из условия отсутствия буксования напряжения увеличивается с увеличением напряжения предварительного натяжения, однако на практике это приводит к снижению долговечности ремня.

    Влияние напряжения от центробежных силдля наиболее распространенных на практике среднескоростных (V< 20 м/с) и тихоходных (V< 10 м/с) передач незначительный.

    Увеличение напряжений изгиба не оказывает влияния на повышение тяговой способности передачи, больше того, они, периодически изменяются, что является главной причиной разрушения ремней от усталости. Поэтому на практике ограничивают минимально допустимые значениями отношения.

    Долговечность ремня зависит также от характера и частоты цикла изменения напряжений.

    Снижение долговечности при увеличении частоты пробегов связано не только с усталостью, но и с термостойкостью ремня. В результате гистерезисных потерь при деформации ремень нагревается с увеличением частоты пробегов. Перегрев ремня приводит к снижению прочности.

    Практика эксплуатации устанавливает, что при соблюдении рекомендаций по выбору основных параметров передачи средняя долговечность ремней составляет 2000...3000 часов.

    Скольжение в ременной передаче

    Исследования М. Е. Жуковского показали, что в ременных передачах имеют место два вида скольжения:

    1. упругое скольжение, существующее при любой нагрузке;
    2. буксование, возникающее при перегрузке. Упругое скольжение является причиной непостоянства передаточного отношения и увеличения затрат на трение.

    Клиноременная передача

    Клиноременная передача имеет преобладающее применение из-за увеличения тяговой способности вследствие повышения трения, при этом сцепление со шкивом увеличивается приблизительно в 3 раза. Ремень имеет клиновую форму поперечного перереза и располагается в соответствующих канавках. Для уменьшения напряжений изгиба применяют несколько ремней. Клиновые ремни изготовляют в виде замкнутой бесконечной ленты.

    Способы натяжения ремней

    Величина силы предварительного натяжения ремней существенно влияет на долговечность, тяговую способность и КПД передачи. Большинство ременных передач работают при переменной нагрузке, расчет при этом выполняется по максимальному значению нагрузки, которая при постоянном значении снижает долговечность и КПД в периоды недогруженности передачи. В этом случае целесообразна конструкция, в которой натяжения ремня автоматически изменяется с изменением нагрузки.

    Постоянное натяжение ремня поддерживается в конструкции, в которой натяжения обеспечивается массой электродвигателя, установленного на качающейся плите, а также при применении натяжных роликов.

    Периодическое подтягивание ремней может обеспечиваться с помощью винта или подобного устройства, способного перемещать двигатель по полозкам плиты.

    Формат: pdf

    Размер: 900КВ

    Язык: русский, украинский

    Пример расчета прямозубой цилиндрической передачи
    Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


    Пример решения задачи на изгиб балки
    В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


    Пример решения задачи на кручение вала
    Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


    Пример решения задачи на растяжение-сжатие стержня
    Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


    Применение теоремы о сохранении кинетической энергии
    Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



    Определение скорости и ускорения точки по заданным уравнениям движения
    Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения

    Передачу механической энергии, осуществляемую гибкой связью посредством трения между ремнем и шкивом, называют ременной. Она состоит из двух шкивов 1 и 2 и ремня 3 (рис.15).

    Рис. 15.

    Классификация

    1. В зависимости от формы поперечного сечения ремня различают следующие виды ременных передач (рис.15):

    Плоскоременные (с прямоугольным профилем поперечного сечения ремня);

    Клиноременные (с трапециевидным профилем поперечного сечения ремня);

    Поликлиноременные (с бесконечными плоскими ремнями, имеющими продольные клиновые выступы-ребра на внутренней поверхности ремня, входящие в кольцевые клиновые канавки шкивов);

    Круглоременные;

    Зубчатые.

    Рис. 16.

    2. По взаимному расположению осей валов:

    С параллельными осями (рис. 17, а , б );

    С пересекающимися осями (рис. 17, г );

    Со скрещивающимися (рис. 17, в ).


    Рис. 17

    3. По направлению вращения шкивов:

    С одинаковым (рис. 17, а , в );

    С противоположным (рис. 17, б ).

    4. По способу создания натяжения ремня:

    Простые (рис. 15);

    С натяжным роликом (рис. 18);

    С натяжным устройством.


    Рис. 18.

    Достоинства ременных передач :

    Возможность передачи энергии на значительные расстояния: до 12…15 м - плоскими ремнями, до 6 м - клиновыми ремнями;

    Простота и низкая стоимость конструкции;

    Плавность и бесшумность хода, способность смягчать удары благодаря эластичности ремня и предохранять механизм от поломок при буксовании, вызванном перегрузкой;

    Возможность передачи мощностей от долей киловатта до сотен киловатт (чаще до 50 кВт, реже до 300 кВт) при окружной скорости до 30 м/с;

    Простота обслуживания и ухода;

    Относительно высокий КПД: h = 0,91…0,98;

    Передаточное отношение i ? 7 (обычно i ?4... 5).

    Недостатки:

    Непостоянство передаточного отношения вследствие упругого скольжения, меняющегося в зависимости от нагрузки;

    Относительно большие габариты передачи и невысокая долговечность ремня (особенно в быстроходных передачах);

    Вытягивание ремня в процессе эксплуатации передачи приводит к необходимости установки дополнительных устройств (натяжной ролик);

    Большие нагрузки на валы и их опоры (подшипники).

    Несмотря на перечисленные недостатки, ременные передачи по применению в промышленности и народном хозяйстве занимают второе место после зубчатых передач. В любой отрасли машиностроения и приборостроения можно встретить плоскоременную или клиноременную передачу: приводы насосов, вентиляторов, транспортеров, конвейеров, рольгангов и др.

    Клиноременные и поликлиноременные передачи применяют при сравнительно больших передаточных отношениях, вертикальном и наклонном расположении параллельных осей валов, требовании малогабаритности передачи и меньших нагрузок на опоры валов, передаче энергии нескольким валам.

    Круглоременные передачи предназначены в основном для передачи малых мощностей и потому имеют меньшее распространение (швейные машины, приборы, настольные станки и т.д.).

    Зубчато-ременные передачи

    Зубчатые (полиамидные) ремни сочетают в своей конструкции все преимущества плоских ремней и зубчатых зацеплений На рабочей поверхности ремней 4 имеются выступы, которые входят в зацепление в выступами на шкивах 1,2 и З. Полиамидные ремни пригодны для высокоскоростных передач, а также для передач с небольшим межосевым расстоянием. Они допускают значительные перегрузки, очень надежны и прочны.

    Передаточное отношение ременных передач:

    i= щ1 / щ2=n 1 /n 2 =D 2 /D 1 (1- e)

    где щ1 и щ2 - угловые скорости на ведущем и ведомом валах;

    n 1 и n 2 - частоты вращения валов;

    D 2 и D 1 - диаметры ведущего и ведомого шкивов;

    e--=?0,01…0,02 - коэффициент упругого скольжения.

    Сшивку применяют для ремней всех типов. Она производится посредством жильных струн или ушивальниками-ремешками из сыромятной кожи III. Более совершенной и надежной считают сшивку встык жильными струнами с наклонными проколами IV.

    Критерии работоспособности ременных передач

    Основными критериями работоспособности ременных передач являются тяговая способность ремня и его долговечность. Основным расчетом является расчет по тяговой способности, который сводится к определению площади поперечного сечения ремня, обеспечивающего передачу необходимого усилия. Долговечность ремня, которая определяется в основном его усталостной прочностью, зависит не только от величины напряжений, но и от характера и частоты цикла изменения этих напряжений (или числа пробегов ремня)

    n--=--u/----l --Ј--,

    где u--- окружная скорость, м/с;

    l - длина ремня, м;

    [n] - допускаемое число пробегов ремня:

    Для плоских ремней Ј?5; - для клиновых --10 .

    Практика показывает, что при соблюдении необходимых рекомендаций долговечность ремней составляет 2000…3000 часов.

    Конструкции основных элементов ременных передач

    Ремень является тяговым органом, от качества которого зависят долговечность и нормальная работа передачи. К нему предъявляют следующие требования: достаточная прочность, надежность и долговечность, невысокая стоимость и не дефицитность материала ремня; высокая тяговая способность и эластичность; достаточно высокий коэффициент трения между ремнем и шкивом.

    Плоские приводные ремни представляют собой гибкую конечную или реже бесконечную ленту из прорезиненной хлопчатобумажной ткани или кожи.

    Кожаные ремни обладают высокой тяговой способностью упругостью и эластичностью. Из-за дефицитности и высокой стоимости их рекомендуют к применению только в ответственных передачах с часто изменяющимися нагрузками и высокими скоростями до 40 м/с.

    Резинотканевые ремни при спокойных нагрузках обладают хорошей тяговой способностью и упругостью, малодефицитны, а потому широко распространены. Они работают в широком диапазоне мощностей (до 50 кВт) со значительными скоростями (до 30 м/с).

    изготовляют бесконечными (бесшовными) в специальных пресс-формах. Они состоят из крученого прорезиненного хлопчатобумажного или синтетического шнура (корда), расположенного в области нейтрального слоя ремня, резинотканевого или резинового слоя, расположенного над кордом и работающего на растяжение при изгибе ремня, резинового слоя, расположенного под кордом и работающего на сжатие при изгибе и обертки из прорезиненной ткани. Клиновые ремни подразделяются на кордтканевые (рис. 19,а) и корд-шнуровые (рис.19,б).

    Рис. 19.

    Применение клинового ремня позволило увеличить тяговую способность передачи за счет повышения трения и сцепление ремня со шкивом по сравнению с плоскоременной передачей.

    В поликлиновых ремнях (стандарта нет) несущий слой выполняют в виде кордшнура из химических волокон (вискоза, лавсан, стекловолокно).

    Эти ремни сочетают достоинства плоских ремней - монолитность и гибкость и клиновых - повышенное сцепление со шкивом.

    Зубчатые ремни способны передавать энергию при неизменном передаточном отношении с высокими окружными скоростями и мощность до сотен киловатт. Эти ремни изготовляют из армированного металлическим тросом неопрена, значительно реже используют пластмассу (полиуретан).

    Шкивы ременных передач изготовляют из стали, алюминиевых сплавов или текстолита при u-->?30 м/с. Наиболее распространенным материалом для изготовления шкивов при u--Ј?30 м/с является серый чугун СЧ 15 и СЧ 21, при u--Ј?25 м/с - СЧ 12

    Рис.20

    Форму канавки шкива (рис. 20) в клиноременной передаче выполняют так, чтобы между ремнем и ее основанием был гарантированный зазор, при этом рабочими являются боковые грани ремня. В то же время ремень не должен выступать за пределы наружного диаметра шкива, иначе своими острыми кромками канавка будет быстро разрушать ремень.