Т системы охлаждения. Устройство и принцип работы системы охлаждения двигателя

Для нормальной работы двигателя необходима температура 80 – 90 градусов. А температура в цилиндре в рабочем состоянии может расти до 2000 градусов, что разрушительно влияет на детали. Система охлаждения в машине позволяет мотору не перегреваться в жару и не промерзать в мороз. Нарушение температурного режима чревато быстрым износом деталей, повышенным расходом топлива и масла, падением мощности двигателя.

Таким образом, система охлаждения контролирует температурные пределы для идеальной работы автомобиля.

Предназначение воздушного охлаждения

Прямое предназначение системы охлаждения – поддерживать оптимальную температуру для работы двигателя. Система охлаждения отвечает и за нагрев воздуха в салоне, за охлаждение моторного масла и рабочей жидкости коробки-автомат, иногда охлаждается приемный коллектор и дроссельный узел. В результате сгорания топлива рассеивается 35% тепла.

Знаете ли Вы? Первая система охлаждения появилась в 1950 году.

Принцип работы воздушной системы охлаждения

Название говорит само за себя – поток воздуха главный в воздушной системе охлаждения. С воздухом отводится тепло от цилиндров, головки блока и масляного радиатора. Вся система состоит из вентилятора (приводится в движение от шкива коленчатого вала ремнем), охладительных ребер цилиндров и головки, съемного кожуха, дефлекторов и контрольных приборов. На вентиляторе стоит защитная сетка, чтобы исключить попадание посторонних предметов.

Воздушный поток принудительно поступает к двигателю при помощи алюминиевых лопастей вентилятора. Движется воздух между ребрами охлаждения, а потом равномерно распределяется с помощью дефлекторов на все детали мотора.

Вентилятор состоит из направляющего диффузора (по окружности в нем имеются неподвижные радиально расположенные лопасти переменного сечения, чтобы направлять поток воздуха) и ротора с 8 радиально расположенными лопатками. Лопасти диффузора меняют направление потока воздуха, и он движется в противоположную от вращения ротора сторону. Это увеличивает давление воздуха и лучше охлаждает двигатель.

Интересно знать! В 1997 году был установлен двигатель воздушного охлаждения с двумя турбинами в 400 лошадиных сил. Он считается самым мощным.

Чтобы увеличить площадь поверхности для контакта с воздухом, на блок и головку блока цилиндров установлены дополнительные ребра. В минуту вентилятор может подать 30 кубов воздуха, что позволяет двигателю работать при температуре от –40° до +40°. Термостаты и заслонки позволяют регулировать интенсивность охлаждения двигателя.

Естественное воздушное охлаждение

Самым простым способом охлаждения двигателя является естественное воздушное охлаждение. На внешней поверхности цилиндров стоят ребра, через которые и отдается тепло. Такая система охлаждения стоит на мотоциклах, мопедах, поршневых двигателях и др.

Принудительное воздушное охлаждение

В системе принудительного воздушного охлаждения есть вентилятор и ребра охлаждения. Кожух покрывает вентилятор и ребра. Это способствует направлению воздушного потока и препятствует проникновению тепла извне.

Преимущества и недостатки

Преимущества двигателей с воздушным охлаждением:

1. Простота конструкции. Легко ремонтировать.

2. Незначительный вес.

3. Надежность.

4. Недорого.

5. Хорошие показатели холодного запуска мотора.

Недостатки:

1. Создает шум.

2. Увеличиваются размеры мотора.

3. Неравномерность обдува и локальный перегрев.

4. Чувствительность к качеству топлива, масла и запчастей.

Внимание! Даже тонкий слой грязи на корпусе мотора снижает продуктивность охлаждения. Поэтому нужно тщательно следить за чистотой корпуса двигателя.

Распространённые поломки

Датчик показывает повышение температуры масла в – охлаждающая система дает сбой в работе. Немедленно заглушите мотор и выясните причину. На приборной панели загорается лампа, которая сигнализирует о неполадках. Причина может быть в обрыве ремня вентилятора. Очень редко случаются проблемы в работе термостата.

Где применяются двигатели з воздушной системой охлаждения

Двигатели с воздушной системой охлаждения применяются все меньше (их вытесняет жидкостное охлаждение) в машиностроении (компактные малолитражки, дизельные ДВС, грузовики, техника сельского хозяйства).

Подписывайтесь на наши ленты в


К атегория:

Автомобили и трактора



-

Основные элементы жидкостном системы охлаждения


Рубашка охлаждения - пространство между двойными стенками блока и головки блока цилиндров или между стенками блока и мокрыми гильзами.

Для обеспечения равномерного охлаждения всех цилиндров жидкость в рубашку охлаждения поступает по распределительной трубе, идущей вдоль верхней части блока цилиндров. В трубе имеются отверстия для подачи жидкости в первую очередь к наиболее нагретым частям двигателя. Не имеют распределительных труб V-образные шести- и восьмицилиндровые двигатели, так как в каждом ряду у этих двигателей расположено всего три-четыре цилиндра.

Радиатор служит для охлаждения жидкости, поступающей из рубашки охлаждения. Радиатор (рис. 37, а) состоит из верхнего и нижнего резервуаров (бачков) и сердцевины, в которой и происходит охлаждение жидкости. В бачках имеются патрубки, соединяемые с патрубками двигателя. В верхнем бачке имеется горловина (через которую заливается жидкость), закрываемая пробкой. Внутри бачка или в горловину впаяна пароотводная трубка. которая отводит пар из системы в случае ‘ закипания жидкости, предотвращая увеличение давления в системе. В нижнем бачке или в патрубке монтируется краник для слива жидкости из радиатора.



-

Рис. 36. Система охлаждения двигателя СМД-14

Сердцевины радиаторов бывают труб-чато-пластинчатые, трубчато-ленточные и пластинчатые (рис. 37, б, в, г). Для придания радиатору большей прочности с обеих сторон сердцевины припаяны жесткие боковины. Радиатор вмонтирован в рамку (см. рис. 37, а), которая крепится к поперечным рамам на резиновых подушках или на пружинах, которые обеспечивают мягкость и эластичность крепления.

Патрубки бачков радиатора соединены с патрубками двигателя гибкими шлангами, которые закреплены на патрубках стяжными хомутами.

Заливная горловина радиатора закрывается специальной пробкой (рис. 38, а), имеющей паровой и воздушный клапаны. Пароотводная трубка впаяна сбоку в горловину над клапанами пробки. В случае возникновения разрежения, равного 0,002-0,01 МПа, воздушный клапан открывается и впускает в верхний бачок воздух из атмосферы. Паровой клапан открывается и выпускает пар из верхнего бачка в атмосферу через пароотводную трубку при повышении избыточного давления в нем до 0,03 МПа (рис. 38, б). Пробка с паровоздушным клапаном унифицирована для большинства отечественных автомобилей и тракторов.

У некоторых тракторных двигателей паровоздушный клапан помещается в отдельном корпусе, который крепится к верхнему бачку радиатора.

Для регулирования интенсивности обдува радиатора встречным потоком воздуха служат жалюзи или шторки радиатора. Они состоят из отдельных пластин-створок (рис. 39), укрепленных шар-нирно впереди радиатора. С помощью тяги/и системы рычагов пластины поворачиваются вокруг своей оси на угол до 90°.

Водяной насос служит для осуществления принудительной циркуляции охлаждающей жидкости. На двигателях с принудительным охлаждением устанавливаются центробежные насосы большой производительности, создающие давление на линии нагнетания от 0,05 до 0,2 МПа. У большинства моделей двигателей водяной насос установлен на одном валике с вентилятором и приводится в действие от коленчатого вала клино-ременной передачей.

Рис. 37. Радиатор системы охлаждения

Рис. 38. Пробка радиатора:
а - открыт паровой клапан; б - открыт воздушный клапан

Рис. 39. Жалюзи радиатора

Принципиальная схема насоса показана на рис. 40, а. Поступающая к патрубку вода подхватывается лопастями крыльчатки и центробежной силой отбрасывается в выходной патрубок, который расположен по касательной к корпусу насоса.

Вал (рис. 40, б) насоса вращается в двух шарикоподшипниках, имеющих уплотнения для удержания смазки в подшипниках и защиты их от загрязнения. Место выхода заднего конца вала из корпуса подшипников уплотнено манжетой, которая состоит из графитизированной текстолитовой шайбы, резинового уплотнителя пружины с двумя обоймами. Полость между подшипниками заполняют смазкой через масленку. На заднем конце вала установлена крыльчатка, которая вращается в корпусе насоса. На переднем конце вала с помощью разрезной конусной втулки и шпонки крепится ступица вентилятора. Такое крепление дает возможность подтягивать ступицу при ослаблении посадки шкива. Привод насоса и вентилятора осуществляется клиновыми ремнями.

При работе насоса охлаждающая жидкость по подводящему патрубку из нижнего бачка радиатора поступает внутрь корпуса. При вращении крыльчатки жидкость отбрасывается центробежной силой к стенкам корпуса и через выходной канал под давлением поступает в рубашку охлаждения двигателя и далее в верхний бачок радиатора.

Вентилятор служит для создания воздушного потока, который охлаждает жидкость в радиаторе и поверхность двигателя.

Вентилятор состоит из вала со шкивом и лопастями, который установлен на подшипниках в общем корпусе с водяным насосом. На наружном конце вала закрепляется ступица, к которой прикрепляются шкив и вентилятор. По числу лопастей вентиляторы бывают двух-, четырех-, пяти,- шести- и восьмилопастные. Наибольшее распространение получили вентиляторы с четырьмя и шестью лопастями. Вентилятор устанавливается за радиатором перед двигателем. Для создания направленного потока воздуха часто устанавливается направляющий кожух, значительно повышающий интенсивность охлаждения. Для уменьшения вибрации и шума лопасти вентилятора располагают крестообразно, попарно под углами 70° или 110°. Лопасти изготовляются штамповкой из листовой стали толщиной 1,25- 1,8 мм и крепятся к ступице шкива. Ширина лопастей обычно не превышает 70 мм.

Рис. 40. Водяной насос и вентилятор двигателя ЗИЛ-130:
а - принципиальная схема; б - конструкция насоса и вентилятора

На новых моделях автомобилей КамАЗ ГАЗ и других в целях ускорения прогрева двигателя зимой устанавливают вентиляторы с механизмами для их отключения.

Вентиляторы выполняются совместно с водяным насосом (ЗИЛ-130, ГАЗ-53А, МТЗ-80, ДТ-75М и др.) или отдельно от него (ЯМЗ-236, ЯМЗ-238 и др.).

Насос и вентилятор приводятся в действие клиноременной передачей от шкива коленчатого вала. Шестеренный привод вентилятора применяется в дизельных двигателях ЯМЭ-236 и ЯМЗ-238. Натяжение ремня регулируется посредством изменения положения шкива генератора (ЗИЛ-130, ДТ-75М, МТЗ-80 и др.), винтовым натяжным устройством (Д-130, Д-108 и др.) или натяжным роликом (ГАЗ-53А и др.).

Рис. 41. Гидромуфта привода вентилятора двигателя ЯМЗ-740

Для поддержания наивыгоднейшего теплового режима двигателя ЯМЗ-740 привод вентилятора осуществляется посредством гидромуфты, которая включается и выключается автоматически в зависимости от температуры жидкости в системе охлаждения. При такой конструкции вентилятор установлен на ведомом валу гидромуфты, которая крепится в передней части блока двигателя и приводится во вращение коленчатым валом двигателя с помощью валика привода гидромуфты.

Гидромуфта состоит из ведущих и ведомых частей, расположенных в полости, образуемой передней крышкой и корпусом (рис. 41).

Ведущая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведущего колеса в сборе с кожухом, ведущего вала и ступицы со шкивом.

Ведомая часть гидромуфты, вращающаяся на шариковых подшипниках, состоит из ведомого колеса, соединенного с ведомым валом, на котором закреплена ступица вентилятора.

Внутренние поверхности ведущего и ведомого колес имеют лопатки. Полость гидромуфты уплотнена резиновыми манжетами.

При работающем двигателе масло, поступающее из системы смазки, попадает на лопатки вращающегося ведущего колеса. Частицы масла, увлекаемые лопатками ведущего колеса, ударяясь вi лопатки ведомого колеса, обеспечивают вращение ведомых деталей и вентилятора. Частота вращения ведомого колеса с вентилятором зависит от количества масла, поступающего в полость гидромуфты.

Корректирование режима работы вентилятора в зависимости от температуры жидкости в системе охлаждения осуществляет выключатель гидромуфты. Он обеспечивает соединение или разъединение ведущего вала с ведомым путем регулирования расхода масла через гидромуфту, а вместе с тем и включение или выключение вентилятора, установленного на ведомом валу гидромуфты.

Выключатель гидромуфты золотникового типа расположен на патрубке, подводящем охлаждающую жидкость к правому боку цилиндров. Он имеет термосиловой элемент, заполненный активной массой, плавящейся с увеличением температуры охлаждающей жидкости. Когда температура жидкости повысится до 80-95 °С, объем активной массы настолько увеличится, что находящийся под ее действием шток переместит золотник выключателя и откроет проход для масла от насоса двигателя в полость гидромуфты. Заполнение полости гидромуфты маслом обеспечивает передачу вращения от ведущего колеса к ведомому Ведомое колесо муфты увеличивает частоту своего вращения, а вместе с этим возрастает и частота вращения вентилятора. Это возрастание происходит очень плавно, и вентилятор равномерно увеличивает скорость воздуха, проходящего через радиатор. С уменьшением подачи масла в полость гидромуфты его объем становится недостаточным для передачи вращения ведущим и ведомым колесам гидромуфты, поскольку из ее полости маслу открыт проход для стекания в поддон картера двигателя. При полном прекращении подачи масла в полость гидромуфты она перестает передавать вращение вентилятору.

Термостат служит для автоматического регулирования температуры жидкости в системе охлаждения путем изменения интенсивности ее циркуляции через радиатор и ускорения прогрева двигателя после пуска.

Термостаты бывают одно- и двухкла—панные жидкостные и с твердым наполнителем. На автотракторных двигателях ранее применялись жидкостные термостаты, а в настоящее время устанавливают термостаты с твердым наполнителем.

Жидкостный термостат (рис. 42, а) состоит из гофрированого цилиндра, заполненного легкокипящей (при 75- 85 °С) жидкостью, корпуса с окнами, основного и перепускного клапанов.

При температуре охлаждающей жидкости ниже 70 °С цилиндр сжат и основной клапан закрыт. Охлаждающая жидкость по перепускному каналу поступает обратно к водяному насосу через два окна, минуя радиатор, благодаря чему достигается быстрый прогрев двигателя.

При повышении температуры жидкости свыше 70 °С в гофрированном цилиндре начинается ее испарение и давление в нем повышается. Под действием возросшего давления основной клапан поднимается, открывая доступ охлаждающей жидкости из рубашки охлаждения в радиатор по патрубку. Одновременно с подъемом основного клапана поднимается и перепускной клапан, постепенно перекрывающий окно и прекращающий доступ охлаждающей жидкости в перепускной канал. При температуре охлаждающей жидкости 81-85 °С прекращается циркуляция через перепускной канал и жидкость в радиатор поступает только через патрубок.

Термостат с твердым наполнителем состоит из медного баллона (рис. 42, б), наполненного активной массой, состоящей из церезина (нефтяной воск), перемешанного с медным порошком. Баллон закрыт крышкой с резиновой мембраной. На мембрану опирается шток, который соединен шарнирно с заслонкой, установленной на шарнирной опоре в горловине водяного патрубка. При непрогретом двигателе заслонка постоянно прижата к краям горловины пружиной и охлаждающая жидкость циркулирует, минуя радиатор, ускоряя прогрев двигателя. При достижении охлаждающей жидкостью температуры 70-85 °С церезин в баллоне термостата плавится и, увеличивая свой объем, перемещает шток с резиновым буфером вверх, открывая заслонку 15. Охлаждающая жидкость циркулирует через радиатор.

При снижении температуры активная масса уменьшает свой объем и заслонка под действием пружины прикрывается. Схема циркуляции охлаждающей жидкости при разных положениях клапана термостата показана на рис. 43.

Слив жидкости из системы охлаждения производится при снятой пробке радиатора через сливные краники на радиаторе и на блоке. У V-образных двигателей имеются два краника (см. рис. 35) на блоке и третий на патрубке радиатора. Пусковой подогреватель также оборудуется сливным краником.

Рис. 42. Термостаты:
а - жидкостного типа: б - с твердым наполнителем

Рис. 43. Схема циркуляции охлаждающей жидкости в системе охлаждения:
а - при закрытом клапане термостата (малый круг циркуляции); б – при открытом клапане (большой круг циркуляции)

Элементы жидкостной системы охлаждения соединяются при помощи стальных труб, чугунных патрубков и прорезиненных гибких шлангов с хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора.

Конденсационный (расширительный) бачок компенсирует изменение объема жидкости при ее нагревании, способствует удалению из охлаждающей жидкости воздуха и конденсации пара, поступающего в него из системы охлаждения.

Расширительный бачок (рис. 44) соединяется перепускной трубкой с верхним бачком радиатора. На верхнем бачке радиатора устанавливается бесклапанная пробка, а на конденсационном бачке - пробка с клапанами, конструкция которых приведена на рис. 38. Бачок имеет сливной кран и пароотводную трубку. При кипении охлаждающей жидкости пар по трубке поступает в расширительный бачок и конденсируется при перемешивании с жидкостью, находящейся в бачке. С понижением температуры в бачке создается разрежение. При этом открывается впускной клапан пробки и воздух поступает внутрь бачка, а охлаждающая жидкость из расширительного бачка пополняет систему. Благодаря наличию бачка в радиаторе поддерживается необходимый уровень жидкости.

Контроль за температурой в системе охлаждения осуществляют по показаниям электрических указателей температуры воды, а также аварийными сигнализаторами.

Рис. 44. Расширительный бачок

Система охлаждения двигателя служит для поддержания нормального теплового режима работы двигателей путем интенсивного отвода тепла от горячих деталей двигателя и передачи этого тепла окружающей среде.

Отводимое тепло состоит из части выделяющегося в цилиндрах двигателя тепла, не превращающейся в работу и не уносимой с выхлопными газами, и из тепла работы трения, возникающего при движении деталей двигателя.

Большая часть тепла отводится в окружающую среду системой охлаждения, меньшая часть – системой смазки и непосредственно от наружных поверхностей двигателя.

Принудительный отвод тепла необходим потому, что при высоких температурах газов в цилиндрах двигателя (во время процесса горения 1800–2400 °С, средняя температура газов за рабочий цикл при полной нагрузке 600–1000 °С) естественная отдача тепла в окружающую среду оказывается недостаточной.

Нарушение правильного отвода тепла вызывает ухудшение смазки трущихся поверхностей, выгорание масла и перегрев деталей двигателя. Последнее приводит к резкому падению прочности материала деталей и даже их обгоранию (например, выпускных клапанов). При сильном перегреве двигателя нормальные зазоры между его деталями нарушаются, что обычно приводит к повышенному износу, заеданию и даже поломке. Перегрев двигателя вреден и потому, что вызывает уменьшение коэффициента наполнения, а в бензиновых двигателях, кроме того, – детонационное сгорание и самовоспламенение рабочей смеси.

Чрезмерное охлаждение двигателя также нежелательно, так как оно влечет за собой конденсацию частиц топлива на стенках цилиндров, ухудшение смесеобразования и воспламеняемости рабочей смеси, уменьшение скорости ее сгорания и, как следствие, уменьшение мощности и экономичности двигателя.

Классификация систем охлаждения

В автомобильных и тракторных двигателях, в зависимости от рабочего тела, применяют системы жидкостного и воздушного охлаждения. Наибольшее распространение получило жидкостное охлаждение.

При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.

По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными) .

Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.

Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.

Классификация систем охлаждения приведена на рис. 3.1.

По способу осуществления циркуляции жидкости системы охлаждения могут быть:

    принудительными, в которых циркуляция обеспечивается специальным насосом, расположенным на двигателе (или в силовой установке), или давлением, под которым жидкость подводится в силовую установку из внешней среды;

    термосифонными, в которых циркуляция жидкости происходит за счет разницы гравитационных сил, возникающих в результате различной плотности жидкости, нагретой около поверхностей деталей двигателя и охлаждаемой в охладителе;

    комбинированными , в которых наиболее нагретые детали (головки блоков цилиндров, поршни) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Рис. 3.1. Классификация систем охлаждения

Системы жидкостного охлаждения могут быть открытыми и закрытыми.

Открытые системы – системы, сообщающиеся с окружающей средой при помощи пароотводной трубки.

В большинстве автомобильных и тракторных двигателей в настоящее время применяют закрытые системы охлаждения, т. е. системы, разобщенные от окружающей среды установленным в пробке радиатора паровоздушным клапаном.

Давление и соответственно допустимая температура охлаждающей жидкости (100–105 °С) в этих системах выше, чем в открытых системах (90–95 °С), вследствие чего разность между температурами жидкости и просасываемого через радиатор воздуха и теплоотдача радиатора увеличиваются. Это позволяет уменьшить размеры радиатора и затрату мощности на привод вентилятора и водяного насоса. В закрытых системах почти отсутствует испарение воды через пароотводный патрубок и закипание ее при работе двигателя в высокогорных условиях.

Жидкостная система охлаждения

На рис. 3.2 показана схема жидкостной системы охлаждения с принудительной циркуляцией охлаждающей жидкости.

Рубашка охлаждения блока цилиндров 2 и головки блока 3, радиатор и патрубки через заливную горловину заполнены охлаждающей жидкостью. Жидкость омывает стенки цилиндров и камер сгорания работающего двигателя и, нагреваясь, охлаждает их. Центробежный насос 1 нагнетает жидкость в рубашку блока цилиндров, из которой нагретая жидкость поступает в рубашку головки блока и затем по верхнему патрубку вытесняется в радиатор. Охлажденная в радиаторе жидкость по нижнему патрубку возвращается к насосу.

Рис. 3.2. Схема жидкостной системы охлаждения

Циркуляция жидкости в зависимости от теплового состояния двигателя изменяется с помощью термостата 4. При температуре охлаждающей жидкости ниже 70–75 °С основной клапан термостата закрыт. В этом случае жидкость не поступает в радиатор 5 , а циркулирует по малому контуру через патрубок 6, что способствует быстрому прогреву двигателя до оптимального теплового режима. При нагревании термочувствительного элемента термостата до 70–75 °С основной клапан термостата начинает открываться и пропускать воду в радиатор, где она охлаждается. Полностью термостат открывается при 83–90 °С. С этого момента вода циркулирует по радиаторному, т. е. большому, контуру. Температурный режим двигателя регулируется также с помощью поворотныхжалюзей, путем изменения воздушного потока, создаваемого вентилятором 7 и проходящего через радиатор.

В последние годы наиболее эффективным и рациональным способом автоматического регулирования температурного режима двигателя является изменение производительности самого вентилятора.

Элементы жидкостной системы

Термостат предназначен для обеспечения автоматического регулирования температуры охлаждающей жидкости во время работы двигателя.

Для быстрого прогрева двигателя при его пуске устанавливают термостат в выходном патрубке рубашки головки блока цилиндров. Он поддерживает желательную температуру охлажда-ющей жидкости путем изменения интенсивности ее циркуляции через радиатор.

На рис. 3.3 представлен термостат сильфонного типа. Он состоит из корпуса 2, гофрированного цилиндра (сильфона), клапана 1 и штока, соединяющего сильфон с клапаном. Сильфон изготовлен из тонкой латуни и заполнен легкоиспаряющейся жидкостью (например, эфиром или смесью этилового спирта и воды). Расположенные в корпусе термостата окна 3 в зависимости от температуры охлаждающей жидкости могут или оставаться открытыми, или быть закрытыми клапанами.

При температуре охлаждающей жидкости, омывающей сильфон, ниже 70 °С клапан 1 закрыт, а окна 3 открыты. Вследствие этого охлаждающая жидкость в радиатор не поступает, а циркулирует внутри рубашки двигателя. При повышении температуры охлаждающей жидкости выше 70 °С сильфон под давлением паров испаряющейся в нем жидкости удлиняется и начинает открывать клапан 1 и постепенно прикрывать окна клапанами 3. При температуре охлаждающей жидкости выше 80–85 °С клапан 1 полностью открывается, окна же полностью закрываются, вследствие чего вся охлаждающая жидкость циркулирует через радиатор. В настоящее время данный тип термостатов применяется очень редко.

Рис. 3.3. Термостат сильфонного типа

Сейчас в двигателях устанавливают термостаты, в которых заслонка 1 открывается при расширении твердого наполнителя – церезина (рис. 3.4). Это вещество расширяется при повышении температуры и открывает заслонку 1 , обеспечивая поступление охлаждающей жидкости в радиатор.

Рис. 3.4. Термостат с твердым наполнителем

Радиатор является теплорассеивающим устройством, предназначенным для передачи тепла охлаждающей жидкости окружающему воздуху.

Радиаторы автомобильных и тракторных двигателей состоят из верхнего и нижнего резервуаров, соединенных между собой большим количеством тонких трубок.

Для усиления передачи тепла от охлаждающей жидкости воздуху поток жидкости в радиаторе направляют через ряд обдуваемых воздухом узких трубок или каналов. Радиаторы изготовляют из материалов, хорошо проводящих и отдающих тепло (латуни и алюминия).

В зависимости от конструкции охлаждающей решетки радиаторы делят на трубчатые, пластинчатые и сотовые.

В настоящее время наибольшее распространение получили трубчатые радиаторы . Охлаждающая решетка таких радиаторов (рис. 3.5а) состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему резервуарам радиатора. Наличие пластин улучшает теплопередачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее, так как при одинаковом сечении струи поверхность охлаждения их больше, чем поверхность охлаждения круглых трубок; кроме того, при замерзании воды в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.


Рис. 3.5. Радиаторы

В пластинчатых радиаторах охлаждающая решетка (рис. 3.5б) устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются сравнительно редко.

Сотовый радиатор относится к радиаторам с воздушными трубками (рис. 3.5в). В решетке сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи водой или охлаждающей жидкостью. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника.

Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения. Из-за ряда недостатков, большинство из которых те же, что и у пластинчатых радиаторов, сотовые радиаторы в настоящее время встречаются крайне редко.

В пробке заливной горловины радиатора установлен паровой клапан 2 и воздушный клапан 1 , которые служат для поддержания давления в заданных пределах (рис. 3.6).

Рис. 3.6. Пробка радиатора

Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, в системах охлаждения устанавливают малогабаритные одноступенчатые центробежные насосы низкого давления производительностью до 13 м 3 /ч, создающие давление 0.05–0.2 МПа. Такие насосы конструктивно просты, надежны и обеспечивают высокую производительность (рис. 3.7).

Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. В водяных насосах автомобильных двигателей обыкновенно применяют полузакрытые крыльчатки, т. е. крыльчатки с одним диском.

Крыльчатки центробежных водяных насосов часто монтируют на одном валике с вентилятором. В этом случае насос устанавливают в верхней передней части двигателя, приводится он в движение от коленчатого вала при помощи клиноременной передачи.

Рис. 3.7. Водяной насос

Ременную передачу можно применять и при установке центробежного насоса отдельно от вентилятора. В некоторых двигателях грузовых автомобилей и тракторов привод водяного насоса осуществляется от коленчатого вала шестеренчатой передачей. Вал центробежного водяного насоса устанавливают обычно на подшипниках качения и снабжают для уплотнения рабочей поверхности простыми или саморегулирующимися сальниками.

Вентилятор в жидкостных системах охлаждения устанавливают для создания искусственного потока воздуха, проходящего через радиатор. Вентиляторы автомобильных и тракторных двигателей делят на два типа: а) со штампованными из листовой стали лопастями, прикрепленными к ступице; б) с лопастями, которые отлиты за одно целое со ступицей.

Число лопастей вентилятора изменяется в пределах четырех – шести. Увеличение числа лопастей выше шести нецелесообразно, так как производительность вентилятора при этом увеличивается крайне незначительно. Лопасти вентилятора можно выполнять плоскими и выпуклыми.

Современный автолюбитель, все больше интересуется устройством автомобиля. В изучении автомобильного устройства, сложно обойти стороной такую важную часть, как поддержание температурного режима в движке авто. СО (Система охлаждающая движок), важнейшая составляющая любой машины. От правильности ее функционирования, зависим износ и продуктивность движка машины. Исправная СО, существенно снижает нагрузку на рабочие элементы двигателя. Для поддержания корректного функционирования системы, необходимо хорошо понимать ее составляющие. Изучив полезные материалы, вы сможете обслуживать СО со знанием дела.

В ходе эксплуатации автомобиля, рабочие части движка способны набирать высокую температуру. Во избежание перегрева рабочих частей, авто оснащается системой охлаждения. Система охлаждения автомобиля, существенно снижает температуру рабочих частей двигателя. Поддержание оптимального температурного режима, происходит благодаря рабочей жидкости. Рабочая смесь, циркулирует по специальным проводникам, предотвращая перегрев. Система, на всех автомобилях, выполняет ряд дополнительных функций.

Функции охладительной системы.

  • Оптимизация температуры смеси для смазывания рабочих частей авто.
  • Регулирование температуры отработанных газов, в выхлопной системе.
  • Понижение температуры смеси для работы АКПП.
  • Понижение температуры воздуха в турбине автомобиля.
  • Нагревание потока воздуха в системе отопления.

На сегодняшний день, существует несколько видов систем охлаждения. Системы, разделяют в частности от способа понижения температуры рабочих частей.

Виды охлаждающих систем.

  • Закрытая. В данной системе, понижение температуры происходит благодаря рабочей жидкости.
  • Открытая (Воздушная). В открытой системе, понижение температуры осуществляется при помощи воздушного потока.
  • Комбинированная. Рассматриваемая система охлаждения, совместила в себе два вида охлаждения. В частности от производителя системы, охлаждение производится совместно или последовательно.

Наиболее популярной в машиностроении, стала система охлаждения двигателя использующая ОЖ. Рассматриваемая система охлаждения, стала наиболее действенной и практичной к эксплуатации. Система охлаждения, равномерно осуществляет понижение температуры рабочих частей двигателя. Рассмотрим устройство и способ функционирования системы, используя наиболее популярный пример.

Вне зависимости от особенностей двигателя, конструкция и функционирование охладительной системы, отличаются не сильно. Таким образом, двигатели с различным видом топлива, обладают практически идентичной системой поддержания температурного режима. Система охлаждения, включает в себя составные части, обеспечивающие ее функционирование. Каждая составляющая, является крайне важна для полноценной работы. При нарушении работы одной составляющей, нарушается корректная оптимизация температурного режима.

Составные элементы систем охлаждения.

  • Теплообменник ОЖ.
  • Масляный теплообменник.
  • Вентилятор.
  • Насосы. В частности от модели ОС, их может быть несколько.
  • Бак для рабочей смеси.
  • Датчики.

Для функционирования рабочей смеси, в системе существуют специальные проводники. Контроль работы системы, осуществляется благодаря центральной системы управления.

Теплообменник, осуществляет понижение температуры жидкости, потоком холодного воздуха. Для изменения тепловой отдачи, теплообменник оснащается определенным механизмом, представляющим небольшую трубку.

Вместе с штатным передатчиком, некоторые производители, оснащают систему теплообменником масла и переработанных газов. Теплообменник масла, осуществляет понижение температуры жидкости, смазывающей рабочие составляющие. Второй, необходим для понижения температуры выхлопной смеси. Регулятор циркуляции выхлопа — снижает температуру выработки совокупности топлива и воздуха. Тем самым, снижается количество получаемого азота, в процессе функционирования двигателя. За правильную работу рассматриваемого устройства, отвечает специальный компрессор. Компрессор, приводит в движение рабочую смесь, перемещая ее по системе. Устройство, является встроенным в ОС.

Теплообменник, отвечает за противоположное действие. Устройство производит увеличение температуры, функционирующего по системе, потока воздуха. Для обеспечения максимальной продуктивности, механизм находиться на выходной части ОЖ из двигателя автомобиля.

Расширительный бочок, предназначен для заполнения системы рабочей смесью. Благодаря данному, в проводники поступает свежая ОЖ, восстанавливающая объем отработанной. Тем самым, уровень смеси, всегда остается необходимым.

Движение ОЖ, происходит благодаря центральному насосу. В зависимости от производителя, насос приводиться в действие различными методами. Большинство насосов, имеют привод в виде ремня или шестеренки. Некоторые производители, оснащают ОС еще одним насосом. Дополнительный насос, необходим при оснащении механизма компрессором, для охлаждения воздушного потока. Блок управления двигателя, отвечает за функционирование всех насосов системы.

Для создания оптимальной температуры жидкости, предусмотрен термостат. Данное устройство выявляет объем жидкости (движущейся через радиатор), который необходимо охладить. Тем самым, создаются необходимый температурный режим, для корректной работы двигателя. Устройство находиться между радиатором и проводника смеси.

Двигатели с большим объемом, оснащаются электрическими термостатами. Данный вид устройств, осуществляют изменение температуры жидкости в несколько этапов. Устройство имеет несколько режимов работы: свободный, замкнутый и промежуточный. Когда, нагрузка на двигатель становиться предельной, благодаря электрическому приводу, термостат приводиться в свободный режим. В данном случае, температура снижается до необходимого уровня. В частности от давления на двигатель, термостат работает в режиме поддержания оптимальной температуры.

Вентилятор, отвечает за улучшение продуктивности регулирования температуры жидкости. В зависимости от модели ОС и производителя, привод вентилятора различается.

Виды привода вентилятора:

  • Механика. Данный вид привода, устанавливает непрерывный контакт с кален — валом движка.
  • Электрика. В таком случае, вентилятор приводиться в действие благодаря электрическому движку.
  • Гидравлика. Специальная муфта с гидравлическим приводом, непосредственно активирует вентилятор.

Благодаря возможности регулировки и множеству режимов работы, наиболее популярным стал — электрический привод.

Важными составляющими совокупности являются датчики. Датчик уровня и температуры охладительной жидкости, позволяют следить за необходимыми параметрами и своевременно их восстанавливать. Так же, в устройстве располагаются центральный блок управления и элементы регулировки.

Датчик температуры ОЖ, определяет показатель рабочей жидкости и переводит его в цифровой формат, для передачи устройству. На выходе радиатора, устанавливается отдельный датчик, для расширения функциональности охладительной системы.

Электрический блок, принимает показатели от датчика и передает его специальным устройствам. Блок, так же изменяет показатели для воздействия, определяя необходимое направление. Для этого, в блоке существует специальная программная установка.

Для осуществления действий и регулировки температуры охлаждающей жидкости, механизм оснащается рядом специальных устройств.

Исполнительные системы ОС.

  • Регулировщик температуры термостата.
  • Переключатель основного и вторичного компрессора.
  • Блок управления режимов вентилятора.
  • Блок, регулирующий работу ОС, после остановки движка.

Принципы функционирования охлаждающей системы.

Контроль за работой охладительной совокупности, осуществляет центральный блок управления двигателя. Большинство автомобилей оборудованы системой, в основе которой лежит определенный алгоритм. Необходимые условия работы и период определенных процессов, определяются с использованием соответствующих показателей. Оптимизация происходит, исходя из показателей датчиков (температура и уровень ОЖ, температура смазывающей жидкости). Тем самым, задаются оптимальные процессы для поддержания температурного режима в движке автомобиля.

Центральный насос, отвечает за постоянное движение охлаждающей жидкости по проводникам. Под давление, жидкость непрерывно движется по проводникам ОС. Благодаря данному процессу, происходит понижение температуры рабочих частей двигателя. В зависимости от особенностей определенного механизма, различают несколько направлений движения смеси. В первом случае, смесь направляется из начального цилиндра в конечный. Во втором, от коллектора выхода до входного.

Исход из показателей температуры, жидкость поступает по узкой или широкой дуге. При запуске двигателя, рабочие элементы и жидкость, в том числе, обладают низкой температурой. Для быстрого повышения температуры, смесь движется по узкой дуге, не охлаждая радиатор. Во время этого процесса, термостат находиться в замкнутом режиме. Тем самым, достигается оперативный прогрев двигателя.

По ходу повышения температуры элементов двигателя, термостат переходит в свободный режим (открывая крышку). При этом, жидкость начинает проходить через радиатор, двигаясь по широкой дуге. Поток воздуха в радиаторе, охлаждает нагретую жидкость. Вспомогательным элементом для охлаждения, так же, может являться вентилятор.

После создания необходимой температуры, смесь переходит в проводники, расположенные на двигателе. Во время работы автомобиля, процесс оптимизации температуры постоянно повторяется.

На автомобилях — оснащенных турбиной, устанавливается специальный механизм охлаждения с двумя уровнями. В данном, происходит разделение проводников ОЖ. Один из уровней — отвечает за охлаждения двигателя автомобиля. Второй — охлаждает воздушный поток.

Охладительное устройство, является особо важным для правильной работы автомобиля. При возникновении неполадок в нем, двигатель может перегреться и выйти из строя. Как и любая составляющая автомобиля, ОС, требует своевременного обслуживания и ухода. Одним из важнейший элементов для поддержания температурного режима, является охлаждающая жидкость. Данную смесь, необходимо регулярно менять, согласно рекомендациям производителя. При возникновении неисправностей в ОС, не рекомендуется эксплуатировать автомобиль. Это может подвернуть двигатель, влиянию высоких температур. Во избежание серьезных неисправностей, необходимо оперативно диагностировать устройство. Изучив устройство и принцип функционирования, вы сможете определить характер неисправности. При возникновении серьезных неисправностей, обратитесь к профессионалам. Данные знания, так же пригодятся вам в этом. Обслуживайте устройство своевременно и вы существенно увеличите срок ее эксплуатации. Удачи в изучении полезного материала.

Первый серийный автомобиль был выпущен компанией «Форд» в начале XX века. Он носил гордую приставку «T» и представлял собой ещё одну веху в развитии человечества. До этого автомобили были уделом горстки энтузиастов, которые устраивали перегоны, и время от времени ездили на послеобеденные променады.

Генри Форд устроил настоящую революцию. Он поставил автомобили на конвейер, и вскоре его машины заполнили собой все дороги Америки. Мало того, заводы были открыты и в Советском Союзе.

Главная парадигма Генри Форда была крайне проста: «Автомобиль может иметь любой цвет, если он чёрный». Подобный подход дал возможность каждому человеку иметь собственную машину. Оптимизация затрат и увеличение масштабов производства позволили сделать цену по-настоящему доступной.

С тех пор прошло много времени. Автомобили беспрестанно эволюционировали. Больше всего изменений и дополнений пришлось на двигатель. Особую роль в этом процессе сыграла система охлаждения. Она совершенствовалась год за годом, позволяя продлить ресурс мотора и избежать перегрева.

История системы охлаждения двигателя

Стоит признать, что система охлаждения двигателя всегда была в автомобилях, правда, её конструкция с годами кардинально менялась. Если смотреть исключительно в сегодняшний день, то в большинстве автомобилей установлен жидкостный тип. К его основным преимуществам можно причислить компактность и высокую производительность. Но так было далеко не всегда.

Первые системы охлаждения двигателей были крайне ненадёжными. Пожалуй, если вы напряжёте память, то вспомните фильмы, в которых события происходят в конце XIX и в начала XX века. В то время машина на обочине с дымящимся двигателем была обычным явлением.

Внимание! Изначально основной причиной перегрева двигателя н было использование в качестве охлаждающей жидкости воды.

Вы как автомобилист должны знать, что в современных автомобилях в качестве ресурса для системы охлаждения используется антифриз. Его аналог даже был в Советском Союзе, только назывался он тосолом.

В принципе, это одно и то же вещество. В его основе лежит спирт, но из-за дополнительных присадок эффективность антифриза кардинально выше. К примеру, тосол в системе охлаждения двигателя покрывает защитной плёнкой абсолютно всё, что крайне негативно сказывается на теплоотдаче. Из-за этого ресурс мотора сокращается.

Антифриз действует совершенно по-другому. Он покрывает защитной плёнкой только проблемные места. Также среди отличий можно вспомнить дополнительные присадки, которые есть в антифризе, разную температуру закипания и так далее. В любом случае наиболее показательным будет сравнение с водой.

Вода закипает при температуре в 100 градусов. Температура кипения антифриза составляет порядка 110—115 градусов. Естественно, благодаря этому случаи закипания двигателя практически исчезли.

Стоит признать, что конструкторами было проведено множество опытов, направленных на то, чтобы модернизировать систему охлаждения двигателя. Достаточно вспомнить исключительно воздушное охлаждение. Такие системы довольно активно применялись в 50—70 годах прошлого века. Но из-за низкой эффективности и громоздкости довольно быстро вышли из употребления.

В качестве успешных примеров автомобилей с воздушными системами охлаждения двигателей можно вспомнить:

  • Fiat 500,
  • Citroën 2CV,
  • Фольксваген Жук.

В Советском Союзе также были автомобили, работающие при помощи воздушной системы охлаждения двигателя. Пожалуй, каждый автомобилист, родившийся в СССР, помнит легендарных «запорожцев», у которых двигатель был установлен сзади.

Как работает жидкостная система охлаждения двигателя

Схема жидкостной системы охлаждения не представляет собой что-либо сверхсложное. Мало того, все конструкции, вне зависимости от того, какие компании занимались их производством, похожи между собой.

Устройство

Перед тем как перейти к рассмотрению принципа работы системы охлаждения двигателя, необходимо изучить основные элементы конструкции. Это позволит вам точно представить, как всё происходит внутри устройства. Вот главные детали узла:

  • Рубашка охлаждения. Это небольшие полости, заполненные антифризом. Они находятся в тех местах, где в наибольшей степени необходимо охлаждение.
  • Радиатор рассеивает тепло в атмосферу. Обычно его ячейки делаются из комбинации сплавов, чтобы добиться наибольшей эффективности. Конструкция не только должна эффективно снижать температуру жидкости, но и быть прочной. Ведь даже маленький камешек может стать причиной пробоины. Сама система состоит из комбинации трубочек и рёбер.
  • Вентилятор крепится сзади радиатора так, чтобы не мешать встречному потоку воздуха. Он работает при помощи электромагнитной или же гидравлической муфты.
  • Термодатчик фиксирует текущее состояние антифриза в системе охлаждения двигателя и при необходимости пускает его по большому кругу. Это устройство устанавливается между патрубком и рубашкой охлаждения. По факту данный элемент конструкции представляет собой клапан, который может быть как биметаллическим, так и электронным.
  • Помпа — это центробежный насос. Его главная задача обеспечить беспрерывную циркуляцию вещества в системе. Устройство работает при помощи ремня или шестерни. Некоторые модели моторов могут иметь сразу два насоса.
  • Радиатор отопительной системы. По своим размерам немного уступает аналогичному устройству для всей системы охлаждения. К тому же он находится внутри салона. Его главная задача передавать тепло в машину.

Конечно же, это не все элементы системы охлаждения двигателя есть ещё патрубки, трубки и множество мелких деталей. Но для общего понимания работы всей системы такого перечня вполне достаточно.

Принцип работы

В системе охлаждения двигателя есть внутренний и внешний круг. По первому охлаждающая жидкость циркулирует пока температура антифриза не дойдёт до определённой черты. Обычно это 80 или 90 градусов. Каждый производитель выставляет свои ограничения.

Как только, порог предельной температуры преодолён — жидкость начинает циркулировать по второму кругу. В таком случае она проходит через специальные биметаллические ячейки, в которых охлаждается. Проще говоря, антифриз попадает в радиатор, где быстро остывает при помощи встречного потока воздуха.

Такая система охлаждения двигателя довольно эффективна, так как позволяет работать автомобилю даже на предельных скоростях. К тому же большую роль в охлаждении играет встречный поток воздуха.

Внимание! Система охлаждения двигателя отвечает за работу печки.

Чтобы лучше объяснить принцип работы современных систем охлаждения двигателя углубимся немного в конструкционные особенности схемы. Как вы знаете, основным элементом двигателя являются цилиндры. В них во время поездки постоянно движутся поршни.

Если в качестве примера взять бензиновый двигатель, то во время сжатия свеча запускает искру. Она воспламеняет смесь, что приводит к небольшому взрыву. Естественно, что температура в это время достигает нескольких тысяч градусов.

Чтобы не было перегрева и существует жидкостная рубашка вокруг цилиндров. Она забирает часть тепла и впоследствии отдаёт её. Антифриз в системе охлаждения двигателя постоянно циркулирует.

Как использование разных охлаждающих жидкостей влияет на систему охлаждения

Как уже было сказано выше, ранее в системах охлаждения использовалась обычная вода. Но подобное решение нельзя было назвать крайне удачным. Кроме того, что двигатели постоянно закипали, был ещё один побочный эффект, а именно, накипь. В больших количествах она парализовала работу устройства.

Причина образования накипи кроется в химической структуре воды. Дело в том, что вода на практике не может обладать стопроцентной чистотой. Единственный способ добиться полного исключения всех посторонних элементов — это дистилляция.

Антифризы, циркулируя внутри системы охлаждения двигателя, не создают накипи. К сожалению, процесс постоянной эксплуатации не проходит для них бесследно. Под действием высоких температур вещества поддаются разложению. Результатом данного процесса является образование продуктов распада в виде налёта коррозии и органики.

Довольно часто к охлаждающей жидкости, циркулирующей внутри системы, попадают посторонние субстанции. Как результат эффективность работы всей системы значительно ухудшается.

Внимание! Самый большой вред наносит герметик. Частички этого вещества при заделке пробоин попадают внутрь, смешиваясь с охлаждающей жидкостью.

Результатом всех этих процессов является то, что внутри системы охлаждения двигателя образуются разнообразные налёты. Они ухудшают теплопроводность. В худшем случае в трубах образовываются засоры. Это, в свою очередь, приводит к перегреву.

Частые неисправности системы

Безусловно, жидкостные системы охлаждения обладают множеством преимуществ, в сравнении со своими ближайшими аналогами. Но даже они иногда выходят из строя. Чаще всего в конструкции образовывается течь, которая приводит к утечке жидкости и ухудшению работы двигателя.

Течь в системе охлаждения двигателя может возникнуть по таким причинам:

  1. Вследствие сильных морозов жидкость внутри замерзла, и конструкция была повреждена.
  2. Частой причиной образования течи является негерметичность соединения шлангов с патрубками.
  3. Высокая закоксованность также может стать причиной утечки.
  4. Потеря эластичности в результате высоких температур.
  5. Механическое повреждение.

Именно последняя причина, если верить статистике чаще всего вызывает течи в системах охлаждения двигателей. Больше всего ударов приходится в область радиатора. Печка также довольно часто страдает.

Также в системе охлаждения двигателя нередко выходит из строя термостат. Это происходит из-за постоянного контакта с охлаждающей жидкостью. В результате образуется коррозийный слой.

Итоги

Устройство системы охлаждения двигателя может показаться не особенно сложным. Но для его создания понадобились годы экспериментов и тысячи неудачных попыток. Но сейчас каждый автомобиль может работать на пределе возможного благодаря качественному отводу тепла от мотора.