Ременная передача применение. Расчёт диаметров шкивов ремённой передачи для поликлиновидного ремня

Лекция 9 РЕМЕННЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация ременных передач.

3. Кинематические и геометрические зависимости в ременных передачах.

4. Динамические зависимости.

5. Условия работоспособности, кривые скольжения, критерии расчета.

6. Порядок расчета ременных передач.

7. Натяжные устройства.

8. Шкивы.

1. Общие сведения

Простейшая ременная передача (рис. 9.1) состоит из двух шкивов – ведущего и ведомого, закрепленных на валах и ремнях, охватывающих шкивы.

Нагрузка передается силами трения, возникающими между шкивами и ремнями, вследствие предварительного натяжения ремня.

Применяется ременная передача для привода от электродвигателя небольшой и средней мощности отдельных механизмов. Окружная скорость до 5 м/с для передач с ремнем не рекомендуется. Обычные ременные передачи работают со скоростью до 10 м/с, а быстроходные – до 60–100 м/с.

Достоинства ременных передач:

1. Простота конструкции и эксплуатации, относительно низкая стоимость.

2. Плавность и бесшумность работы, обусловленная эластичностью ремня.

3. Возможность передачи мощности на большие расстояния (клиновыми ремнями до 15 м) при скорости до 100 м/с.

4. Смягчения вибраций и толчков благодаря упругости ремня.

5. Возможность предохранения механизмов от перегрузок за счет упругой вытяжки ремня и проскальзывания ремня.

6. Пониженные требования к точности взаимного расположения осей

Недостатки ременных передач:

1. Непостоянство передаточного числа из-за упругого проскальзывания ремня, в зависимости от величины нагрузки.

2. Значительные габариты.

3. Значительные нагрузки на валы и опоры от натяжения ремня.

4. Незначительная долговечность ремней (1000–5000 ч) в быстроходных передачах.

5. Необходимость в постоянном контроле во время работы из-за возможного соскакивания, обрыва и вытяжки ремней.

6. Неприменимость во взрывоопасных помещениях.

7. Необходимость предохранения от попадания масла на ремень.

2. Классификация ременных передач

По конструктивной разновидности. Основные разновидности ременных передач показаны на рис. 9.2–9.4. Наибольшее распространение имеют открытые передачи (рис. 9.2, а ), перекрестные передачи (рис. 9.2, б ) применяют для изменения направления вращения ведомого шкива.

При использовании натяжного ролика (рис. 9.3) увеличивается угол обхвата ремня шкивов.

Полуперекрестные, или угловые (рис. 9.4), ременные передачи осуществляют движение между валами с пересекающимися осями.

Передаточное число открытых ременных передач – до 5, перекрестных – до 6, полуперекрестных – до 3, с натяжным роликом – до 10.

Ременные передачи позволяют передавать движение одного ведущего шкива (поз. 1 рис. 9.5) к нескольким ведомым (поз. 2 рис. 9.5).

По профилю ремня. В зависимости от профиля ремни делятся на плоские (рис. 9.6, а ), клиновые (рис. 9.6, б ), круглые (рис. 9.6, в ) и поликлиновые (рис. 9.6, г ). Круглые ремни предназначены для передач в приводах малых мощностей: швейных машин, бытовых приборов, настольных станков, радиоаппаратуры и т. д.

Разновидностью приводных ремней является зубчатый ремень, передающий движения за счет зацепления зубьев шкива и трения.

П л о с к и е р е м н и. Среди традиционных плоских ремней наибольшей тяговой способностью обладают кожаные ремни . Они могут работать со скоростью до 40–45 м/с на шкивах малых диаметров и имеют износоустойчивые кромки. Ремни хорошо работают в условиях переменных и ударных нагрузок. Размеры кожаных ремней стандартизированы по ГОСТ 18670–73. В то же время стоимость их велика, вследствие чего они имеют ограниченное применение.

Хлопчатобумажные ремни (ГОСТ 6982–75) применяются в быстроходных передачах при небольших мощностях. Они обеспечивают плавную работу и более дешевые. Такие ремни не применяются в условиях трения по кромкам и при работе в сырых помещениях или температурах выше 50 ºС. Для быстроходных передач используют шитые и тканые бесконечные ремни толщиной 1,5–2 мм.

Шерстяные ремни (ОСТ/НКТП 3157) применяются для передачи средних мощностей, отличаются высокими упругими свойствами и поэтому хорошо зарекомендовали себя при работе с большими ударными нагрузками. Они менее чувствительные к взаимодействию температуры, влажности, паров кислоты и щелочей.

Наибольшее применение имеют плоские прорезиненные ремни. Основная нагрузка воспринимается хлопчатобумажной тканью (бельтингом), резиновые прослойки обеспечивают работу ремня как единого целого. Ремни выпускаются с шириной 20–120 мм, обладают хорошей нагрузочной способностью и допускают работу при скоростях до 30 м/с. Основной недостаток таких ремней – высокая чувствительность к воздействию агрессивных сред. Прорезиненные ремни выполняют как бесконечными, так и конечными, которые потом соединяют склеиванием.

Прорезиненные ремни выпускают трех видов: нарезные – тип А, послойно завернутые – тип Б и спирально завернутые – тип В. Нарезные ремни, состоящие из нескольких (нарезанных) слоев, используют при работе с большими скоростями и малыми диаметрами шкивов. Ремни типа Б выпускают с резиновыми прокладками и без них и применяют при скорости до 20 м/с. Ремни типа В работают со скоростями не выше 15 м/с, их применяют на шкивах с ребордами и в перекрестных передачах.

Весьма перспективны ремни из синтетических материалов.

Пленочные, или синтетические, ремни (МРТУ 17-645–69) обладают высокой статической прочностью и долговечностью, выдерживают температуру 50 ºС

и относительную влажность до 95 %. Изготавливают пленочные ремни из тканей просвечивающего и гарнитурного переплетения для ширины до 75 мм

и с переплетением на основе двухуточной саржи для ширины до 50 мм с

пропиткой и облицовкой синтетическим материалом. Ремни из ткани просвечивающего переплетения более легкие. Пленочные ремни могут работать при скорости от 50 до 100 м/с.

На основе синтетических материалов разработаны многослойные ремни Exstramultus, которые не выдерживают действие кислот, фенола, но малочувствительны к маслам, охлаждающей жидкости, бензину, бензолу. Вследствие высокого предела упругости материала (сердечник из полиамида, наружный слой из хромовой кожи и поливинилхлорида) ремни не получают остаточных удлинений даже при перегрузке и не требуют подтягивания.

К л и н о в ы е р е м н и. Обычные клиновые ремни изготавливают двух конструкций: кордтканевые и кордшнуровые (рис. 9.7, а , б ) в которых передатчиком нагрузки служит корд из бельтинга, расположенный в нейтральном слое. Слой под кордом (слой сжатия) изготавливают из более твердой резины, а слой над кордом (слой растяжения) – из резины средней твердости. Оболочку клиновых ремней изготавливают из текстильной пряжи, искусственного шелка или нейлона с покрытиями из специальных материалов для повышения сопротивляемости разрушению.

Кордшнуровые ремни более гибкие и долговечные, а кордтканевые лучше переносят перегрузки, имеют большую поперечную жесткость и амортизирующую способность.

Замена бельтинга синтетическими волокнами (лавсан, вискоза, анид) позволяет повысить прочность ремней или уменьшить их ширину (узкие клиновые ремни).

В зависимости от отношения расчетной ширины b р к высоте h клиновые ремни изготавливают трех видов сечения: нормального (b p / h 1,4) ,

узкого (b p /h = 1,05–1,1) и широкого (b p /h = 2–4,5).

Ремни нормального сечения (ГОСТ 1284.1–80, ГОСТ 1284.2–80, ГОСТ 1284.3–80) выпускают семи сечений (0, А, Б, В, Г, Д, Е), отличающихся друг от друга размерами при геометрическом подобии и бесконечной длине. Профили Г, Д, Е в настоящее время все чаще заменяются поликлиновыми ремнями. Допускаемая скорость для профилей 0, А, Б, В – до 25 м/с (рис. 9.7, в ), для профилей Г, Д, Е – до 30 м/с.

Узкие клиновые ремни (РТМ 51-15-15-70) имеют сечения четырех размеров: У0, УА, УБ и УВ, которые по нагрузочной способности могут заменить все сечения нормальных клиновых ремней. Максимальная скорость для них – до 40 м/с.

Широкие клиновые ремни используют в основном в вариаторах. Благодаря повышенному сцеплению со шкивами, обусловленному эффектом клина, чем плоскоременных.

b0 b 0

Недостатки клиновых ремней : большие потери на трение и большие напряжения изгиба в ремне.

К клиновым ремням относят поликлиновые ремни (рис. 9.8), которые сочетают достоинства клиновых ремней (повышенное сцепление со шкивами) и плоских (гибкость). Такие ремни могут передавать большие мощности, хорошо работать на малых шкивах, допустимые скорости для них – до 40 м/с. Передачи с поликлиновыми ремнями отличаются меньшими габаритами.

Разработаны ремни трех сечений (рис. 9.8): К, Л, М, размеры которых регламентированы РТМ 38-40528-74. В американских и канадских стандартах предусмотрены еще два сечения (Н и J ) меньших размеров, в основном для бытовой техники и легкой промышленности.

Наряду с перечисленными видами клиновых ремней выпускают ремни с вогнутым нижним, а иногда и выпуклым верхним основаниями. Вогнутость увеличивает продольную гибкость ремня при его изгибе. Выпуклость превышает поперечную жесткость ремня и способствует сохранению трапециевидной формы ремня, предупреждая его деформацию. Чтобы сделать ремень достаточно гибким, по нижнему основанию, а иногда и по обоим, делают зубцы. Для уменьшения износа кромки ремней скашивают.

Двойной клиновый ремень, работающий верхней и нижней частями на различных шкивах, широко используют в сельхозмашиностроении, хотя его долговечность ниже, чем у обычного.

В некоторых случаях (при необходимости сложного монтажа) целесообразно использовать конечные клиновые ремни или ремни, составленные из отдельных элементов, но их долговечность меньше бесконечных.

З у б ч а т ы е и к р у г л ы е р е м н и. Зубчатые ремни сочетают преимущества плоских ремней и зубчатых зацеплений. Их изготавливают из маслостойких искусственных материалов, из резины на основе хлоропреновых каучуков, из вулкалана, которые армируют стальными или полиамидными проволочками.

Зубчатые ремни не имеют скольжения, требуют меньшего натяжения, создают меньшие нагрузки на валы и опоры, работают почти бесшумно со скоростью до 80 м/с. Однако расход мощности на деформацию зубьев у них больше, больший собственный вес, шкивы для них дороже, ремень нуждается в предохранении от осевого смещения (используют шкивы с ребордами). Зубчатые ремни выпускают шириной 5–380 мм, с модулем от 2–10 мм.

Из круглых ремней наиболее распространены хлопчатобумажные, капроновые, реже используют прорезиненные и кожаные.

3. Кинематические и геометрические зависимости

в ременных передачах

Мощности . Диапазон мощностей, передаваемых цепями, довольно широк – от 0,3 до 50 кВт. Можно использовать цепи и при больших мощностях, но при этом резко возрастают габариты.

Скорости. В ременных передачах верхний предел скоростей ограничивается ухудшением условий работы ремня в связи с ростом центробежных сил, что приводит к образованию воздушной подушки между шкивом и ремнем и уменьшает долговечность ремня.

Скорость ведущего шкива, м/с:

v 1 ω 1d 1 π d 1n 1 .

Значение скоростей для отдельных видов передач и материалов, из которых они выполняются, имеют определенный предел:

Обычные материалы. . . . . . . . . . . . . . . . . . . . . . . .

От 5 до 30 м /с

Специальные текстильные или прорезиненные.

До 50 м /с

Полиамидные, пленочные. . . . . . . . . . . . . . . . . . . .

До 100 м /с

Ремни клиновые:

типа 0, А, Б, В. . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 25 м /с

типа Г, Д, Е. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

До 30 м /с

Из-за неизбежного скольжения окружные

скорости ведущего и

ведомого шкивов не равны, т. е. v 1 v 2 и v 1 v 2 ;

v 2 1 ξ v 1 ,

где ξ – коэффициент упругого или относительного скольжения; для плоских ремней ξ = 0,01–0,012; для клиновых ремней ξ = 0,015–0,02.

Передаточные отношения

ограничиваются габаритами передачи,

а также условием получения достаточного угла обхвата на малом шкиве:

i max = 10, i опт = 2,5–4,

d 1 ξ

Диаметры шкивов:

для плоских ремней

d 1 1100 1300

d 2 d 1 i 1 ξ ;

для клиновых ремней d 1 выбирают по таблицам в зависимости от типа ремня, а d 2 – как для плоских ремней;

для поликлиновых ремней

d1 a b T1 ,

где a и b – коэффициенты диаметра d 1 ; а = 65, b= 3 при Т 1 ≤ 25 Н м; а = 45,

b = 2 при Т 1 ≥ 26–90 Н м;

для зубчатых ремней d 1 выбирают по таблицам в зависимости от модуля зацепления. Модуль m вычисляют исходя из усталостной прочности зубьев ремня:

m k 3 1 p ,

где k – коэффициент, учитывающий форму зуба; k = 35 для ремней с трапецеидальной формой зубьев, k = 25 для ремней с полукруглой формой зубьев; Р 1 – номинальная мощность на ведущем валу, кВт; с р – коэффициент динамичности и режима работы, с р = 1,3–2,4.

Диаметр ведомого шкива

d2 = mZ2 .

Межосевое расстояние выбирают таким, чтобы можно было обеспечить необходимый угол обхвата на малом шкиве (рис. 9.9): для плоских ремней α > 150º, для клиновых – α > 120º.

Для плоских ремней

a min = 2(d 1 + d 2),

для клиновых ремней

a min = 0,5(d 1 + d 2 ) + h.

Максимальное межосевое расстояние a mаx ограничивается габаритными размерами и стоимостью передачи.

Малые размеры шкивов снижают долговечность передачи, так как

увеличиваются изгибные напряжения.

α 180 γ 180

d 1 d 2

57o .

Длина ремня

l 2 a

d 1 d 2

Для конечных ремней расчетная длина ремня согласуется с ГОСТом, а затем по окончательно принятой длине ремня уточняется величина межцентрового расстояния.

Уточненное значение межцентрового расстояния

2 l π d d

a 0, 25

2 l π d d

2 8 d

4. Динамические зависимости

Окружная сила рассчитывается по формуле

K P F t д 1 ,

где K д – коэффициент, учитывающий динамическую нагрузку и режим работы (определяется по таблице в зависимости от характера нагружения); K д 1; Р 1 – мощность на ведущем шкиве, кВт (Вт).

Усилие предварительного натяжения. Начальное натяжение ремня F 0

выбирается таким, чтобы ремень мог сохранять это натяжение достаточно длительное время, не вытягиваясь и обеспечивая достаточное сцепление между ремнем и шкивами:

F 0 A σ 0 ,

где А – площадь сечения ремня; σ0 – напряжение предварительного натяжения; σ0 = 1,8 МПа для плоских ремней без натяжного устройства; σ0 = 2,0 МПа для плоских ремней с автоматическим натяжением; σ0 = 1,2–1,5 МПа для клиновых ремней; σ0 = 3–4 МПа для полиамидных ремней.

Усилия в ветвях ремня. Величина усилий в ведущей F 1 и ведомой F 2 ветвях определяется из условия равновесия моментов на ведущем шкиве, которое записывается в виде

T 1 0,5 d 1 F 1 F 2 0,5 d 1F t .

Ременную передачу относят к передачам трением с гибкой связью. Она состоит из ведущего и ведомого шкивов и ремня, надетого на шкивы предварительным натяжением (рис. 13.1). Нагрузку передают силы трения, возникающие между шкивами и ремнем. Являются разновидностью фрикционных передач, где движение передаётся посредством специального кольцевого замкнутого ремня.

Ре менные передачи применяются для приводаагрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сго рани я.

Достоинства ременных передач.

1. Простота конструкции.

2. Возможность передачи движения на значительные расстояния (до 15 м).

3. Возможность работы с высокими частотами вращения.

4. Плавность и бесшумность работы.

5. Смягчение вибраций и толчков.

6. Предохранение механизмов от перегрузок за счет возможности проскальзывания ремня (к передачам зубчатым ремнем это свойство не относится).

Недостатки.

    Большие радиальные размеры.

    Малая долговечность ремня.

    Большие нагрузки на валы и подшипники.

    Непостоянство передаточного число.

Применение . Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по конструктивным соображениям межосевое расстояние а должно быть достаточно большим, а передаточное число и может быть не строго постоянным (приводы стан- ков, конвейеров, дорожных и строительных машин и др.). Передачи зубчатым ремнем можно применять и в приводах, требующих постоянного значения и. Мощность, передаваемая ременной передачей, обычно до 50 кВт, хотя может достигать 2000 кВт и больше. Скорость ремня v = 5...50 м/с, а в высокоскоростных передачах до 100 м/с и выше. Ограничение мощности и скорости вызвано большими габаритами передачи, ухудшением условий работы ремня, малыми значениями долговечности и КПД.

22. Классификация ременных передач. Геометрия ременной передачи

В зависимости от формы поперечного сечения ремня передачи бывают: плоским ремнем, клиновым ремнем, круглым ремнем, поликлиновым ремнем. Наибольшее применение в машиностроении имеют клиновые и поликлиновые ремни. Передачу круглым ремнем применяют в приводах малой мощности (настольные станки, приборы). Разновидностью ременной передачи является передача зубчатым ремнем; передающая нагрузку путем зацепления ремня со шкивами. Плоские ремни применяются как простейшие, с минимальными напряжениями изгиба, а клиновые имеют повышенную тяговую способность.

Клиновые ремни применяют по несколько штук, чтобы варьировать нагрузочную способность и несколько повысить надёжность передачи. Кроме того, один толстый ремень, поставленный вместо нескольких тонких будет иметь гораздо большие напряжения изгиба при огибании шкива.

Основные геометрические соотношения ременных передач

1. Межосевое расстояние а ременной передачи определяет в основном конструкция привода машины. Рекомендуют: для передач плоским ремнем a ≥ 1,5(d 2 +d 1) (13.1) для передач клиновым и поликлиновым ремнем a ≥0,55(d 2 + d 1)+ h ,(13.2) где d 1 и d 2 - диаметры шкивов; h - высота сечения ремня.

2. Расчетная длина ремня L Р равна сумме длин прямоли- нейных участков и дуг обхвата шкивов 13.3) По найденному значению из стандартного ряда выбирают ближайшую бульшую расчетную длину ремняL p . При соединении концов длину ремня увеличивают на 30...200 мм.

3. Межосевое расстояние при окончательно установленной длине ремня L p (13.4)

4. Угол обхвата ремнем малого шкива. (13.5) Для передачи ремнем рекомендуютα 1 ≥150 α , клиновым или поликлиновым - α 1 ≥110 .

Автомобильная механика включает в себя довольно большое число механизмов, которые передают различные вращательные или поступательные движения на другие устройства. Одним из таких устройств является клиноременная передача. В этой статье мы постараемся как можно подробнее рассказать, что это такое, для чего она нужна и как работает?

Что такое и как работает клиноременная передача?

Ременная передача – это способ передачи вращающей механической энергии от его источника на другой механизм. В данном случае, такой энергией выступает вращающий момент. Любая ременная передача состоит из одного ремня и двух шкивов как минимум.

Ремень, как правило, изготавливается из резины, прошедшей специальную обработку, которая позволяет ей стойко переносить не слишком сильные механические воздействия на растяжение и некоторые термические отклонения. Существует множество разновидностей ременных передач, но мы остановимся на самом распространенном варианте – клиноременной, которая получила достаточно широкое распространение в автомобилестроении.

Клиноременная передача выполнена в виде ремня клинообразной формы и соответствующих шкивов. Шкив клиноременной передачи представляет собой металлический диск со специальными ответвлениями по окружности, предназначенными для самого ремня. Ремень, в свою очередь имеет два варианта исполнения: зубчатый ремень или гладкий.

Изначально таким ремнем приводилось большое количество различных механизмов автомобиля. Основными и по сей день остаются генератор и водяной насос. На грузовых и многих других современных автомобилях с помощью такого ремня приводятся в движение специальные и воздушные компрессоры для усилителей тормозной системы автомобиля.

Главной особенностью шкива клиноременной передачи должна быть специальная канава для ремня. Без нее, данный ремень попросту соскочит с механизма, так как имеет сравнительно малую толщину. Такой подход позволяет сократить место, занимаемое ременным приводом за чет уменьшения его габаритов.

Размеры шкивов зависят от передаточного соотношения. Если передача понижающая, то ведущий шкив должен быть меньше ведомого и наоборот.

Ремень же должен обладать определенной мягкостью в различных погодных условиях. Так как автомобиль предназначен для эксплуатации в зимний и летний период, а значит, ремень не должен терять своих эластичных свойств не при каких обстоятельствах. Применение любого другого ремня в клиноременной передаче недопустимо.

Видео - Устройство ременной передачи - шкивы и ремни

Преимущества и недостатки ременной передачи

Как и все механизмы, ременная передача тоже имеет свои преимущества и недостатки, решить все из которых, к сожалению, не удается, что позволяет применять этот механизм только в определенной деятельности.

Достоинства:

  • Повышенная плавность работы . Так как резина обладает достаточной эластичностью, это позволяет ей снижать ударные нагрузки и уменьшать вибрации, возникающие .
  • Возможность неточной установки шкивов . Эластичный ремень допускает небольшой перекос, что не повлияет на общую работу механизма. Именно поэтому, данная передача имеет возможность изменения передаточного соотношения на ходу и так широко применяется на вариаторных коробках передач.
  • Отсутствие шума . Всегда и везде ременная передача славилась отсутствием шума. Это и заставило разработчиков ВАЗ 2105 выпустить именно с ременным приводом ГРМ.
  • Полное отсутствие перегрузок . Дело в том, что ремень в процессе своей работы может проскальзывать, что снижает нагрузку на механизм и защищает от износа дорогостоящие металлические детали устройства. Так, например, при слишком быстром вращении коленчатого вала, не получает такого же вращающего момент, а крутится со своей скоростью, полученной изначально, так как увеличив тягу, ремень начинает проскальзывать относительно второго шкива. Кроме того, в мотоблоках ременная передача используется в качестве привода сцепления, так как работает намного мягче и плавно.
  • Экономическая целесообразность . Дело в том, что шкивы и ремни стоят довольно дешево и не так часто нуждаются в замене. Пожалуй, ремневой привод является самым экономичным из всех.
  • Ременную передачу не нужно смазывать . Мало того, смазка негативно скажется на работе ремня, так как он начнет проскальзывать чаще и не сможет передать требуемый вращающий момент.
  • В случае повреждения ремня, он просто без последствий слетает с механизма, в отличие от цепи, которая ломает, все что «достанет».
  • на достаточно большое расстояние. Мало того, некоторые ремни имеют способность к растяжению, что делает их со временем еще мягче.

Недостатки:

  • Шкивы ременного привода имеют намного больший размер, чем шкивы каких-либо других передач. Это делает данную конструкцию слишком большой, хотя нагрузка на оба вида передач абсолютно одинаковая.
  • Малая прочность ремня и ускоренный износ. При перетяжке ремень постоянно нагревается и обрывается, что вызывает остановку механизма.
  • Нарушение передаточного соотношения вследствие проскальзывания ремня относительно других шкивов. Данная проблема почти полностью отсутствует в зубчатом варианте ремня.
  • Нужда в дополнительных устройствах: устройство натяжения ремня, устройства, гасящие колебания и удерживающее ремень в канавках.
  • Слишком небольшая несущая способность.

Вот и все, что собой представляет клиноременная передача. В современном машиностроении она играет далеко не последнюю роль, поэтому не стоит ее недооценивать.

Ременная передача - это механизм переноса энергии с помощью приводного ремня, использующего силы трения или зацепления. Величина передаваемой нагрузки зависит от натяжения, угла обхвата и коэффициента трения. Ремни огибают шкивы, один из которых ведущий, а другой - ведомый.

Достоинства и недостатки

Ременная передача имеет следующие положительные свойства:

  • бесшумность и плавность в работе;
  • не требуется высокая точность изготовления;
  • проскальзывание при перегрузках и сглаживание вибраций;
  • нет необходимости в смазке;
  • небольшая стоимость;
  • возможность ручной замены передачи;
  • легкость монтажа;
  • отсутствие поломок привода при обрыве ремня.

Недостатки:

  • большие размеры шкивов;
  • нарушение передаточного отношения при проскальзывании ремня;
  • небольшая мощность.

В зависимости от вида ремень бывает плоским, клиновым, круглым и зубчатым. Этот элемент ременной передачи может объединять преимущества нескольких типов, например, поликлиновый.

Области использования

  1. Привод ременной передачи с плоским ремнем применяется на станках, пилорамах, генераторах, вентиляторах, а также везде, где требуется повышенная гибкость и допускается проскальзывание. Для высоких скоростей используются синтетические материалы, для меньших - кордтканевые или прорезиненные.
  2. Ременная передача с клиновыми ремнями применяется для сельскохозяйственной техники и автомобилей (вентиляторная), в тяжелонагруженных и высокоскоростных приводах (узкая и нормального сечения).
  3. Вариаторы нужны там, где скорость вращения промышленных машин регулируется бесступенчато.
  4. Приводы с зубчатыми ремнями обеспечивают наилучшие характеристики передач в промышленности и в бытовой технике, где требуются долговечность и надежность.
  5. Круглоременные применяются для малых мощностей.

Материалы

Материалы подбираются к условиям эксплуатации, где основное значение имеют нагрузка и тип. Они бывают следующими:

  • плоские - кожаные, прорезиненные со сшивкой, цельнотканевые из шерсти, хлопчатобумажные или синтетические;
  • клиновые - армирующий слой в центре с резиновой сердцевиной и тканая лента наружи;
  • зубчатые - несущий слой из металлического троса, полиамидного шнура или стекловолокна в основе из резины или пластмассы.

Поверхности ремней покрываются тканями с пропиткой для повышения износостойкости.

Плоские ремни ременных передач

Типы передач бывают следующими:

  1. Открытые - с параллельными осями и вращением шкивов в одном направлении.
  2. Шкивы со ступенями - можно изменить обороты ведомого вала, при этом у ведущего они постоянные.
  3. Перекрестные, когда оси параллельны, а вращение происходит в разных направлениях.
  4. Полуперекрестные - оси валов скрещиваются.
  5. С натяжным роликом, увеличивающим угол обхвата шкива меньшего диаметра.

Ременная передача открытого типа применяется для работы при высокой скорости и с большим межосевым расстоянием. Высокие КПД, нагрузочная способность и долговечность позволяют использовать ее в промышленности, в частности для сельскохозяйственных машин.

Клиноременная передача

Передача характеризуется трапециевидным поперечным сечением ремня и соприкасающимися с ним поверхностями шкивов. Передаваемые усилия при этом могут быть значительными, но ее КПД - небольшой. Клиноременная передача отличается небольшим расстоянием между осями и высоким передаточным числом.

Зубчатые ремни

Передача применяется для высокой скорости при небольшом расстоянии между осями. Она обладает одновременно преимуществами ременных и цепных приводов: работа при высоких нагрузках и с постоянным передаточным отношением. Мощность 100 кВт может обеспечивать преимущественно зубчатая ременная передача. Обороты при этом являются очень высокими - скорость ремня достигает 50 м/с.

Шкивы

Шкив ременной передачи бывает литым, сварным или сборным. Материал выбирают в зависимости от оборотов. Если он изготовлен из текстолита или пластмассы, скорость составляет не более 25 м/с. Если она превышает 5 м/с, требуется статическая балансировка, а для быстроходных передач - динамическая.
В процессе работы у шкивов с плоскими ремнями происходит износ обода от проскальзывания, надлом, трещины, поломка спиц. В клиноременных передачах изнашиваются канавки на рабочих поверхностях, ломаются буртики, происходит разбалансировка.

Если вырабатывается отверстие ступицы, его растачивают, а затем запрессовывают втулку. Для большей надежности ее делают одновременно с внутренним и наружным шпоночными пазами. Тонкостенную втулку устанавливают на клей и крепят болтами через фланец.

Трещины и изломы заваривают, для чего шкив сначала разогревают для устранения остаточных напряжений.

При обтачивании обода под клиновидный ремень допускается, что частота вращения может изменяться до 5% от номинальной.

Расчет передач

Все расчеты для любых типов ремней основаны на определении геометрических параметров, тяговой способности и долговечности.

1. Определение геометрических характеристик и нагрузок. Расчет ременной передачи удобно рассмотреть на конкретном примере. Пусть нужно определить параметры ременного привода от электрического двигателя мощностью 3 кВт к токарному станку. Частоты вращения валов составляют, соответственно, n 1 = 1410 мин -1 и n 2 = 700 мин -1 .

Выбирается обычно узкий клиновой ремень как наиболее часто используемый. Номинальный момент на ведущем шкиве составляет:

T1 = 9550P 1: n 1 = 9550 х 3 х 1000: 1410 = 20,3 Нм.

Из справочных таблиц выбирается диаметр ведущего шкива d 1 = 63 мм с профилем SPZ.
Скорость ремня определяется так:

V = 3,14d 1 n 1: (60 х 1000) = 3,14 х 63 х 1410: (60 х 1000) = 4,55 м/с.

Она не превышает допустимую, которая составляет 40 м/с для выбранного типа. Диаметр большого шкива составит:

d2 = d 1 u х (1 - e y) = 63 х 1410 х (1-0,01) : 700 = 125,6 мм.

Результат приводится к ближнему значению из стандартного ряда: d 2 = 125 мм.
Расстояние между осями и длину ремня находят из следующих формул:

a = 1,2d 2 = 1,2 х 125 = 150 мм;
L = 2a + 3,14d cp + ∆ 2: a = 2 х 150 + 3,14 х (63 + 125) : 2 + (125 - 63) 2: (4 х 150) = 601,7 мм.

После округления до ближайшего значения из стандартного ряда получается окончательный результат: L= 630 мм.

Межосевое расстояние изменится, и его можно снова пересчитать по более точной формуле:

a = (L - 3,14d cp) : 4 + 1: 4 х ((L - 3,14d cp) 2 - 8∆ 2) 1/2 = 164,4 мм.

Для типовых условий передаваемая одним ремнем мощность определяется по номограммам и составляет 1 кВт. Для реальной ситуации ее надо уточнить по формуле:

[P] = P 0 K a K p K L K u .

После определения коэффициентов по таблицам получается:

[P] = 1 х 0,946 х 1 х 0,856 х 1,13 = 0,92 кВт.

Требуемое количество ремней определяется делением мощности электродвигателя на мощность, которую может передавать один ремень, но при этом еще вводится коэффициент С z = 0,9:

z = P 1: ([P]C z) = 3: (0,92 х 0,9) = 3,62 ≈ 4.

Сила натяжения ремня составляет: F 0 = σ 0 A = 3 х 56 = 168 H, где площадь сечения А находится по таблице справочника.

Окончательно нагрузка на валы от всех четырех ремней составит: F sum = 2F 0 z cos(2∆/a) = 1650 H.

2. Долговечность. В расчет ременной передачи входит также определение долговечности. Она зависит от сопротивления усталости, определяемого величиной напряжений в ремне и частотой их циклов (количество изгибов в единицу времени). От появляющихся при этом деформаций и трения внутри ремня происходят разрушения усталости - надрывы и трещины.

Один цикл нагрузки проявляется в виде четырехкратного изменения напряжений в ремне. Частота пробегов определяется из такого соотношения: U = V: l < U d ,
где V - скорость, м/с; l - длина, м; U d - допускаемая частота (<= 10 - 20 для клиновых ремней).

3. Расчет зубчатых ремней. Главным параметром является модуль: m = p: n, где p - окружной шаг.

Величина модуля зависит от угловой скорости и мощности: m = 1,65 х 10-3 х (P 1: w 1) 1/3 .

Поскольку он стандартизован, расчетная величина приводится к ближайшему значению ряда. Для высоких скоростей берутся повышенные значения.

Число зубьев ведомого шкива определяется по передаточному числу: z 2 = uz 1 .

Межосевое расстояние зависит от диаметров шкивов: a = (0,5...2) х (d 1 + d 2).

У ремня число зубьев будет равно: z p = L: (3,14m), где L - ориентировочная расчетная длина ремня.

После выбирают ближнее стандартное число зубьев, затем определяют точную длину ремня из последнего соотношения.

Нужно также определить ширину ремня: b = F t: q, где F t - окружная сила, q - удельное натяжение ремня, выбираемое по модулю.

Нагрузка на валы составит: R = (1...1,2) х F t .

Заключение

Работоспособность ременных передач зависит от типа ремней и условий их эксплуатации. Правильный расчет позволит выбрать надежный и долговечный привод.

Ременной передачей называется кинематический механизм передающий энергию с помощью гибкой связи использующей трение между ремнем и шкивом.

Составными частями ременной передачи являются расположенные на некотором расстоянии друг от друга ведущий и ведомый шкивы, которые огибаются специальным приводным ремнем.

Уровень передаваемой нагрузки при ременной передаче зависит от таких факторов, как напряжение натяжения ремня, коэффициент трения и угол обхвата шкива.

Ременные передачи

Ременные передачи бывают различных типов и классифицируются в зависимости о того, какую форму имеет поперечное сечение ремня. По этому критерию специалисты различают передачи круглоременные, клиноременные и плоскоременные. При этом в технике наиболее распространены клиновидные и плоские ремни.

Главным преимуществом плоских ремней является то, что их напряжение в местах соприкосновения со шкивами минимально, а клиновидных – то, что, благодаря своему профилю, они характеризуются повышенной тяговой способностью. Что касается круглых ремней, то их чаще всего можно встретить в машинах и механизмах, имеющих относительно небольшие размеры, к примеру, приборах, настольных станках, оборудовании пищевой и швейной промышленности.

Достоинства и недостатки ременных передач

Основными плюсами, которые имеют ременные передачи , являются следующие: несложная конструкция и невысокая стоимость; возможность обеспечения трансляции вращательного момента на большие расстояния; простота в эксплуатации и обслуживании; безударность работы и плавность хода.

В то же самое время ременные передачи имеют и целый ряд недостатков, к которым следует отнести: относительно большие размеры не позволяющие использовать их в ряде случаев; недолговечность при использовании на быстроходных механизмах; невозможность обеспечения постоянного передаточного отношения ввиду проскальзывания ремня; большие нагрузки на опоры и валы.

Следует также подчеркнуть, что надежность ременных передач существенно ниже, чем трансмиссий других типов, поскольку не исключены и достаточно часто случаются обрывы ремней и их соскакивания со шкивов. Именно поэтому ременные передачи требуют большего внимания с точки зрения обслуживания, и за ними нужно постоянно следить.

Типы плоскоременных передач

В зависимости от того как расположены оси шкивов, а так же от их назначения плоскоременные передачи разделяются на следующие типы: открытые передачи, передачи со ступенчатыми шкивами, перекрестные передачи и передачи с натяжным роликом.

Открытые передачи, характеризуются параллельными осями и тем, что шкивы вращаются в одном и том же направлении.

Передачи со ступенчатыми шкивами обеспечивают возможность изменения угловой скорости вращения ведомого вала при постоянной скорости ведущего вала.

У перекрёстных передач шкивы вращаются в противоположных направлениях, а их оси параллельны.

Передачи с натяжным роликом обеспечивают натяжение ремня в автоматическом режиме и увеличение угла обхвата шкива с небольшим диаметром.

Основными материалами для изготовления плоских ремней являются кожа, шерстяные, прорезиненные и хлопчатобумажные ткани, причем они могут иметь различную ширину. Какие именно из них используются в каждом конкретном случае, зависит от назначения ремня и условий его эксплуатации. Кроме того, немаловажное значение имеет и та нагрузка, которую будет испытывать ремень во время функционирования передачи.

Конструкция плоскоременной передачи относительно несложная, ее можно с успехом применять тогда, когда требуется высокие скоростные характеристики кинематических механизмов и большие расстояния между осями шкивов.

Клиноременная передача

Основным признаком клиноременной передачи является то, что ее приводной ремень имеет трапециевидное сечение с углом профиля, равным 40 ° . По сравнению с ремнем плоского типа она способна передавать достаточно большие тяговые усилия, однако КПД ее существенно ниже.

Главная функция любого приводного ремня – это передача тягового усилия, и поэтому ему необходимо быть прочными, износостойкими, долговечными, обеспечивать хорошее сцепление со шкивами и при этом быть относительно недорогими.

Основная сфера использования клиноременных передач – машины и механизмы с малыми межосевыми расстояниями и большими передаточными отношениями. Оси валов при этом чаще всего располагаются в вертикальной плоскости.

Зубчатые ремни

Зубчатые ремни чаще всего изготавливаются из такого прочного и современного синтетического материала, как полиамид. В них довольно удачно сочетаются преимущества, которые имеют зубчатые зацепления и плоские ремни.

Эти ремни на своих рабочих поверхностях имеют небольшие выступы, которые во время работы входят в небольшие выемки, расположенные на шкивах. Они неплохо подходят для тех передач, которые передают вращение на высоких скоростях, а межосевое расстояние при этом невелико.

Шкивы для ременных передач

Для плоскоременных передач самой предпочтительной формой рабочей поверхности, которую имеет шкив, является гладкая поверхность, имеющая некоторую выпуклость. Что касается клиновидных ремней, то у них рабочими являются боковые поверхности шкивов. Шкивы изготавливаются из таких материалов, как сталь, пластические массы, алюминиевые сплавы и чугун.