Для каких двигателей применяется. Двигатели внутреннего сгорания

УЧЕБНОЕ ПОСОБИЕ

НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ "РУССКАЯ ТЕХНИЧЕСКАЯ ШКОЛА"

"ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ"

Часть 1. «Устройство работа и обслуживание двигателя внутреннего сгорания»

АННОТАЦИЯ
к учебному пособию Слесарь по ремонту автомобилей.
«Двигатель внутреннего сгорания».

Данная книга предваряет серию изданий, посвящённых устройству обслуживанию и ремонту автомобильной техники. Книга состоит из двух частей. В её первой части - «Устройство и работа двигателя внутреннего сгорания», даются основные понятия и термины, описывается конструкция, работа и техническое обслуживание бензинового и дизельного двигателя, рассматриваются процессы, протекающие в цилиндрах, а также аспекты нагруженности деталей двигателя и силы, действующие на детали. Вторая часть пособия - "Ремонт двигателя внутреннего сгорания" знакомит читателя (учащегося) с основами диагностики, видами и методами ремонта, приёмами слесарных работ. Материал изложен в последовательности его преподавания в НОУ «Русская Техническая Школа» на курсах профессиональной подготовки профессии «Слесарь по ремонту автомобилей».
Пособие ориентировано на учащихся курсов, но может быть интересно более широкому кругу читателей, чья деятельность, так или иначе, связанна с автотранспортом (профессиональные водители, автолюбители, работники автопредприятий и др.), а так же учебным центрам и колледжам. Пособие призвано помочь учащемуся (читателю) освоить новую для себя профессию «Слесарь по ремонту автомобилей», повысить профессиональный уровень, или же самостоятельно изучить устройство автомобиля и автомобильного двигателя.

К ЧИТАТЕЛЮ.
Изучив данное пособие, Вы должны знать:

  • устройство легкового автомобиля;
  • общее устройство основных узлов и агрегатов легкового автомобиля;
  • устройство двигателя внутреннего сгорания;
  • конструкцию двигателей современных автомобилей и автомобилей, снятых с производства;
  • устройство кривошипно-шатунного и газораспределительного механизмов и основных систем двигателя внутреннего сгорания;
  • конструкцию кривошипно-шатунных и газораспределительных механизмов двигателей современных автомобилей, а также конструкции основных систем двигателей внутреннего сгорания;
  • работу двигателя внутреннего сгорания, его систем и механизмов;
  • процессы, протекающие в цилиндрах работающего двигателя, силы, действующие на детали двигателя и вызывающие их износ;
  • периодичность и виды технического обслуживания двигателя внутреннего сгорания;
  • основные термины и понятия;
  • основные признаки неисправностей, способы их диагностирования и устранения;
  • виды, приёмы и методы ремонта двигателя.

Изучив данное пособие, Вы должны уметь:

  • различать конструкции двигателей внутреннего сгорания, его систем и механизмов;
  • диагностировать типовые неисправности двигателя по внешним признакам;
  • применять на практике полученные знания.

Общие сведения об устройстве автомобиля

    • Кузов
    • Шасси
      • Трансмиссия
      • Ходовая часть
      • Механизмы управления

Автомобильные двигатели

2.1 Классификация поршневых двигателей внутреннего сгорания

Общее устройство двигателя внутреннего сгорания

3.1 Корпус двигателя
3.2 Детали цилиндропоршневой группы и кривошипно-шатунного механизма
3.3 Газораспределительный механизм

3.3.1 Распределительный вал и детали привода распределительного вала
3.3.2 Детали клапанной группы
3.3.3 Привод клапанов и их детали
3.3.4 Системы регулирования фаз газораспределения
3.4 Системы охлаждения и смазки двигателя
3.4.1 Назначение, устройство и работа системы охлаждения
3.4.2 Назначение, устройство и работа системы смазки
3.5 Техническое обслуживание двигателя

Работа двигателя внутреннего сгорания

4.1 Рабочий цикл четырёхтактного бензинового двигателя
4.2 Рабочий цикл четырёхтактного дизельного двигателя
4.3 Работа четырёхтактных многоцилиндровых двигателей
4.4 Нагруженность и износ деталей

Глава 1. ОБЩИЕ СВЕДЕНИЯ ОБ УСТРОЙСТВЕ АВТОМОБИЛЯ

Автомобиль состоит из трёх основных частей: 1) кузова; 2) шасси и 3) двигателя. Основные части автомобиля, в свою очередь состоят из узлов и агрегатов. Узлы и агрегаты собраны из деталей. Общая компоновка легкового автомобиля с приводом на задние колёса показана на рис. 1.1 (см. версию с иллюстрациямии pdf)

1.1 Кузов

Кузова легковых автомобилей, по большей части имеют несущую конструкцию, которая предполагает крепление основных узлов и агрегатов непосредственно к его корпусу. Немногим реже встречаются легковые автомобили, имеющие кузов с несущим основанием или подрамником, ещё реже - рамную конструкцию. Несущий кузов получил распространение с 50-х годов прошлого столетия.
Корпус несущего кузова рис. 1.2 объемный, из листового металла толщиной 0,5 –2,0 мм, представляет собой жесткую сварную конструкцию, состоящую из отдельных, предварительно собранных узлов: 1)основания (пола) с передней и задней частями корпуса; 2) левой и правой боковин со стойками дверей и задними крыльями; 3) крыши и 4) передних крыльев. Жёсткость кузова обеспечивается наличием в его составе большого числа профильных элементов из штампованных деталей, которые при соединении создают закрытые коробчатые сечения.
Тип кузова определяется числом функциональных отсеков (объёмов) и конструктивным исполнением. Изготовителями выпускаются автомобили с трёх-, двух-, и однообъёмными кузовами.
Трёхобъёмный кузов имеет в своём составе моторный отсек, салон и багажное отделение (например, лимузин, купе, седан, кабриолет, хардтоп).
Двухобъёмный кузов имеет моторный отсек и салон, совмещённый с багажным отделением, расположенным в задней части салона (например, универсал, комби, фастбек, хэтчбек).
В однообъёмном кузове моторный отсек, салон и багажник объединены в одно целое (например, минивэны с центральным расположением силового агрегата, пассажирские фургоны типа «буханка»).
Кузов может быть открытым или закрытым. Открытый тип кузова имеет съёмную крышу или складывающийся верх, выполненный из матерчатого или пластикового тента (например, кабриолет, родстер, фаэтон, ландо).
Грузовые типы кузовов легковых автомобилей также могут быть открытыми – «пикап», или закрытыми – «фургон». Грузовая часть кузова таких автомобилей отделена от водителя и пассажиров стационарной перегородкой.
Некоторые типы кузовов легковых автомобилей представлены на рис. 1.3.

1.2 Шасси

Шасси автомобиля обеспечивает передачу усилия от двигателя к ведущим колёсам, управление автомобилем и его передвижение. В состав шасси входит: 1) силовая передача (трансмиссия); 2) ходовая часть и 3) механизмы управления.

1.2.1 Трансмиссия

Трансмиссия осуществляет передачу крутящего момента от коленчатого вала двигателя к ведущим колёсам, трансформируя его (крутящий момент) в зависимости от условий движения автомобиля. Силовые передачи автомобилей могут иметь существенные отличия.
По степени приспособленности к различным дорожным условиям и назначению, силовые передачи можно разделить на: 1) трансмиссию автомобилей классической компоновки; 2) трансмиссию автомобилей с приводом на передние колёса; 3) трансмиссию автомобилей повышенной проходимости с «колёсной формулой – 4х4»; 4) трансмиссию автомобилей дорожной проходимости с «колёсной формулой – 4х4».
Расположение узлов и агрегатов трансмиссии автомобилей различного назначения показаны на рис. 1.4.
Автомобиль классической компоновки имеет привод на задние колёса и переднее продольное размещение силового агрегата. Трансмиссия такого автомобиля состоит из: 1) сцепления, 2) коробки передач, 3) карданной передачи и 4) ведущего моста, в котором размещается главная передача с дифференциалом и полуосями.

Сцепление обеспечивает соединение двигателя и трансмиссии при движении автомобиля, а также осуществляет передачу вращения от коленчатого вала на валы коробки передач. Когда при изменении условий движения необходимо переключить передачу сцепление отсоединяет вал двигателя от трансмиссии. Сцепление легковых автомобилей, имеющих механическую трансмиссию - фрикционное, сухое с одним ведомым диском и механическим или гидравлическим приводом.
Однодисковое фрикционное сцепление имеет 1) ведомый диск со ступицей, гасителем крутильных колебаний (демпфером ) и фрикционными накладками; 2) нажимной диск; 3) диафрагменную нажимную пружину; 4) кожух сцепления и некоторые другие детали.
Общее устройство сцепления легкового автомобиля показано на рис. 1.5.
В автомобилях с автоматическими трансмиссиями используются гидродинамические трансформаторы и коробки передач, действующие автоматически, в зависимости от скоростного и нагрузочного режима движения автомобиля.

Коробка передач служит для изменения тягового усилия на колёсах, а также для получения заднего хода и отсоединения ведущих колёс от двигателя. На легковых автомобилях, как правило, применяются двух или трёхвальные коробки передач.
В трансмиссиях с ручным или полуавтоматическим переключением передач применяются механические коробки в основном с цилиндрическими шестернями внешнего зацепления.
В автомобилях с автоматическими трансмиссиями применяются как вальные, так и планетарные коробки передач, управление переключением передач в которых осуществляется автоматически многодисковыми сцеплениями, работающими в масляной ванне, и ленточными тормозами, позволяющими переключать передачи без разрыва потока мощности (т.е. без переключения на «нейтральную» передачу). Количество многодисковых сцеплений и ленточных тормозов зависит от числа передач в коробке.
Трансформация передаваемого от двигателя крутящего момента посредством переключения передач в коробке передач достигается введением в зацепление шестерён различного диаметра, меняющих как соотношение между числами оборотов коленчатого вала двигателя и ведущих колёс автомобиля, так и величину тяговых усилий.
Величина изменений указанных характеристик определяется передаточным числом передачи (чем больше передаточное число передачи, тем сильнее изменяется крутящий момент). Передаточное число в общем случае равно отношению числа зубьев (диаметра) ведомой шестерни к числу зубьев (диаметру) ведущей.
Механическая коробка передач имеет корпус, в котором размещаются: 1) первичный, вторичный и промежуточный валы; 2) шестерни передач; 3) синхронизаторы; 4) штоки и вилки переключающего механизма; 5) рычаг переключения передач и другие детали. Общее устройство пятиступенчатой коробки передач показано на рис. 1.6.

Карданная передача осуществляет передачу усилия от коробки передач на главную передачу ведущего моста автомобиля. Вследствие того, что при движении автомобиля его ведущий мост совершает колебания в вертикальной и горизонтальной плоскостях, карданная передача должна передавать крутящие моменты при постоянно изменяющихся углах наклона между валами и расстояниях между передней и задней осями.
Карданная передача состоит из: 1) карданного вала (валов); 2) карданных шарниров или шарниров равных угловых скоростей; 3) промежуточных опор и эластичных муфт карданного вала (валов). Устройство карданной передачи полноприводного автомобиля показано на рис. 1.7.

Главная передача обеспечивает передачу крутящего момента с карданного вала на полуоси под углом 90° и изменяет крутящий момент в соответствии со своим передаточным числом. Главные передачи легковых автомобилей, по большей части, одинарные и состоят из двух шестерён – ведущей и ведомой. Ведущая шестерня приводится в движение от карданного вала. Ведомая шестерня крепится к корпусу дифференциала и передаёт вращение на полуоси.
Дифференциал служит для распределения крутящего момента между ведущими колёсами и позволяет им вращаться с разной скоростью при движении автомобиля в повороте или по неровной дороге. Наибольшее распространение имеют дифференциалы с коническими шестернями . Дифференциал состоит из корпуса (коробки) дифференциала, в котором размещаются: 1) полуосевые шестерни; 2) саттелитовые шестерни и 3) ось саттелитов.
Полуоси передают крутящий момент от дифференциала на ведущие колёса автомобиля.
Главная передача с дифференциалом и полуосями устанавливается в балке ведущего моста. Балка моста имеет центральную часть – картер и полуосевые рукава . Балка является задней осью автомобиля и крепится к кузову через элементы подвески. Балки бывают разъёмные и неразъёмные. Устройство ведущего моста с главной передачей и дифференциалом показано на рис. 1.8.
Трансмиссия автомобилей с приводом на передние колёса отличается от рассмотренной выше тем, что не имеет заднего ведущего моста и карданной передачи. Главная передача и дифференциал размещаются в дополнительном картере коробки передач, а передача усилий от дифференциала на колёса осуществляется через валы привода передних колёс с шарнирами равных угловых скоростей (ШРУС).
Трансмиссия автомобилей повышенной проходимости «внедорожников» с «колёсной формулой – 4х4» дополнительно имеет вторую коробку передач – раздаточную коробку ; несколько карданных передач; два ведущих моста – передний и задний, с главными передачами и межколёсными дифференциалами. Раздаточная коробка, как правило, снабжена понижающей передачей и может иметь межосевой дифференциал (для версий с постоянным (т.е. не отключаемым) приводом на все колёса). Также предусматривается механизм блокировки одного или нескольких дифференциалов. На части техники применяются самоблокирующиеся дифференциалы или дифференциалы повышенного трения, а также механизмы отбора мощности на привод вспомогательных механизмов, например лебёдки.
К внедорожникам предъявляются повышенные требования, касающиеся силы тяги, прочности подвески, кузова, а также других узлов и систем. К компоновочным особенностям таких машин, можно отнести короткую базу и высокий клиренс (дорожный просвет) которые, наряду с вышеперечисленными характеристиками, позволяют преодолевать различную степень бездорожья.
Трансмиссия автомобилей дорожной проходимости с «колёсной формулой – 4х4» предназначена для эксплуатации на дорогах с твёрдым покрытием, но может иметь «компромиссную» конструкцию, т.е. одновременно отвечать требованиям как «внедорожника», так и «обычного» автомобиля с приводом на передние или задние колёса. Чаще всего применяется схема, где передние колёса являются основными ведущими, а задний мост подключается автоматически и по мере необходимости. В качестве механизма автоматического подключения заднего моста используются многодисковые вязкостные муфты или механизмы повышенного трения, размещаемые в раздаточной коробке. Сама раздаточная коробка, как правило, монтируется в одном корпусе с коробкой передач.
Трансмиссия современных автомобилей может иметь электронные или электронно-гидравлические устройства управления силой тяги ведущих колёс , к которым относят противобуксовочную систему (ASR). Противобуксовочная система предотвращает проворачивание колёс относительно дорожного покрытия, при излишнем крутящем моменте тем самым, обеспечивая плавное трогание автомобиля с места, оптимальную тягу на колёсах и поддержание курсовой устойчивости автомобиля.

1.2.2 Ходовая часть

Ходовая часть автомобиля состоит из: 1) несущего основания; 2) передней и задней осей; 3) подвески и 4) колёс.

Несущим основанием легкового автомобиля является несущий кузов или рама. Так же, несущее основание может быть образовано элементами рамы, соединёнными с профильными элементами панели пола. Полученная таким образом конструкция, представляет собой отдельный узел автомобиля. К несущему основанию (кузову или раме) крепятся все части и механизмы автомобиля. На раму устанавливается и сам кузов (кабина).

Передние и задние оси автомобиля могут быть ведущими и неведущими . Ведущими осями являются балки ведущих мостов (переднего и/или заднего). Неведущая ось грузового автомобиля представляет собой стальную балку при помощи рессор соединяемую с рамой. У легковых автомобилей, имеющих независимую подвеску колёс, понятие неведущей передней и задней оси отсутствует. В передней части несущего кузова автомобиля с задней ведущей осью имеется стальная балка – поперечина, прикрепляемая к кузову жёстко. В задней части несущего кузова автомобиля с приводом на передние колёса также имеется поперечная балка, называемая соединителем рычагов, которая присоединяется к кузову через элементы подвески. К балкам крепятся рычаги подвески и другие детали.

Подвеска гасит колебания кузова, возникающие при движении автомобиля, смягчает и поглощает удары колёс о неровности дороги тем самым, обеспечивая больший комфорт водителю и пассажирам, сохранность грузов и эксплутационную безопасность автомобиля. Подвеска автомобилей бывает зависимой и независимой . Следует различать рессорные, рычажные, пружинные, торсионные, гидропневматические и пневматические подвески, а также подвески смешанного типа. Основные типы подвесок показаны на рис. 1.9а. и рис. 1.9б.

Колёса автомобиля могут быть ведущими, ведомыми и управляемыми. Ведущими колёсами могут являться передние колёса, задние колёса или все колёса автомобиля. Если ведущей является одна пара колёс (независимо – передняя или задняя), то автомобиль имеет колёсную формулу 4х2; если ведущими являются все четыре колеса, то – 4х4.
Управляемые колёса у легкового автомобиля – передние.
Управляемые передние колёса устанавливаются на ось с углом развала в вертикальной плоскости, равным 0 - 3° и схождением 2 – 4 мм. Для стабилизации управляемых колёс в среднем положении ось поворота колеса имеет поперечный и продольный наклоны (рис. 1.10.).
Колесо состоит из металлического обода и диска. У штампованных колёс диск с ободом соединяются посредством сварки. У литых и кованых колёс диск и обод выполнен за одно целое. На обод колеса монтируется шина. Шины бывают двух типов – камерные и бескамерные. По способу укладки несущего корда, различают шины радиальные и диагональные, а по форме и рисунку протектора – зимние, летние и всесезонные. Имеются и другие конструктивные различия шин.

1.2.3 Механизмы управления

К механизмам управления относятся рулевое управление и тормоза.
Рулевое управление обеспечивает изменение направления движения автомобиля путём поворота его управляемых колёс. Рулевое управление состоит из: 1) рулевого колеса с валом, установленным в рулевой колонке; 2) рулевого механизма; 3) рулевого привода и некоторых других деталей.
Рулевой механизм обеспечивает передачу усилий от рулевого колеса с валом на детали рулевого привода и далее на рулевую трапецию и управляемые колёса. Большее распространение имеют рулевые механизмы глобоидально-червячного и реечного типа .
К деталям рулевого привода легковых автомобилей с независимой передней подвеской относят рулевую сошку, маятниковый рычаг, среднюю и боковые рулевые тяги, рулевые наконечники, рулевые рычаги поворотных кулаков или стоек и другие детали. В устройстве привода рулевого механизма червячного или реечного типа имеются отличия.
Детали рулевого привода образуют рулевую трапецию . Рулевая трапеция осуществляет одновременный поворот управляемых колёс, при этом, внутреннее к центру поворота колесо должно поворачиваться на больший угол, чем внешнее, для обеспечения качения колёс по окружностям, описанным из одного центра. Следует различать нерасчленённые и расчленённые рулевые трапеции. Нерасчленённую трапецию применяют на автомобилях, у которых управляемые колёса устанавливаются на одной оси, подвешенной через детали подвески к кузову или раме. Расчленённую подвеску используют при независимой подвеске управляемых колёс. Рулевые управления с глобоидально-червячным механизмом и механизмом реечного типа показаны на рис. 1.11.
Тормозные системы автомобиля служат для снижения скорости автомобиля и его остановки, а также для удержания автомобиля в неподвижном состоянии. Замедление автомобиля обеспечивает рабочая тормозная система . Удержание автомобиля в неподвижном состоянии на уклоне при остановке или стоянке обеспечивает стояночная тормозная система . Помимо перечисленных систем, которые можно назвать основными, автотранспортные средства оснащаются другими средствами для торможения. На грузовых автомобилях и прицепных устройствах находят применение аварийные, запасные, вспомогательные, а также различные типы моторных тормозных систем. Широкое распространение имеют антиблокировочные системы (ABS) .
Управление рабочей тормозной системой осуществляется от ножной педали тормоза. Передача усилий от педали тормоза к рабочим тормозным механизмам реализуется через гидравлический, пневматический и редко механический привод. В автомобилях, оснащённых системами ABS, ASR и системами управления динамикой автомобиля тормозные усилия регулируются ЭБУ (электронными блоками управления). Электронные системы управления тормозами широко используется в электропневматических и электрогидравлических тормозных механизмах.
Основными узлами и деталями рабочей тормозной системы с гидравлическим приводом являются: 1) главный тормозной цилиндр с бачком для тормозной жидкости; 2) рабочие тормозные цилиндры, соединённые с главным тормозным цилиндром и регулятором тормозных усилий трубопроводами; 3) колёсные тормозные механизмы, состоящие из тормозных барабанов или дисков и тормозных колодок; 4) педаль тормоза и усилитель тормозов вакуумного или иного типа.
Стояночный тормоз имеет механический привод и при включении блокирует задние колёса автомобиля. В ряде устаревших конструкций стояночный тормоз воздействует на карданный вал (в настоящее время применение трансмиссионного стояночного тормоза запрещено Правилами ЕЭК ООН и ГОСТ РФ). На грузовых автомобилях с пневмотормозами стояночный тормоз приводится в действие при помощи энергоаккумулятора.
Общее устройство рабочей и стояночной тормозной системы легкового автомобиля показано на рис. 1.12.

Глава 2. АВТОМОБИЛЬНЫЕ ДВИГАТЕЛИ.

Двигатель является на автомобиле основным источником механической энергии и используется в качестве силовой установки, приводящей машину в движение. На автотранспортные средства устанавливают двигатели различных конструкций, среди которых большее распространение получили поршневые двигатели внутреннего сгорания (ДВС). Гораздо в меньшей степени используются роторные двигатели внутреннего сгорания (двигатели Ванкеля) , и всё большее число производителей склоняется к применению комбинированных (гибридных) установок , объединяющих в себе поршневой ДВС и электродвигатель. На части техники устанавливаются газотурбинные двигатели и электродвигатели .
Поршневыми двигателями внутреннего сгорания (рис. 2.1) комплектуется большинство современных автомобилей. В поршневых двигателях давление газов, образующееся от сгорания топлива в камере сгорания, воспринимается поршнем, движущимся в цилиндре. Возвратно-поступательное движение поршня посредством кривошипно-шатунного механизма преобразуется во вращательное движение коленчатого вала.
К поршневым ДВС относятся дизельные двигатели , с самовоспламенением топливно-воздушной смеси и двигатели Отто, с воспламенением смеси от постороннего источника тепла, например от электрической искры, образующейся между электродами свечи системы зажигания. Такие двигатели называют двигателями с искровым зажиганием. По конструкции кривошипно-шатунного и газораспределительного механизмов дизельные двигатели и двигатели Отто практически не отличаются.
Роторные двигатели внутреннего сгорания (рис. 2.2) имеют ряд преимуществ перед поршневыми двигателями и ряд недостатков, сдерживающих их широкое применение. С двигателем экспериментировали многие известные автомобилестроительные фирмы, включая Волжский Автомобильный Завод (ВАЗ), но на сегодняшний день, пожалуй, только «Мазда» серийно устанавливает их на спортивные версии своих машин.
В двигателе Ванкеля роль поршня выполняет ротор, имеющий форму равностороннего треугольника со скруглёнными вершинами и слегка выпуклыми сторонами, вращающийся в овальном корпусе (цилиндре) по сложной траектории (эпитрохоиде ) .
Комбинированные (гибридные) двигатели имеют в своём составе двигатель внутреннего сгорания и электродвигатель, осуществляющий передачу крутящего момента на коленчатый вал ДВС или непосредственно на ведущие колёса автомобиля. В силу свойства «обратимости электрических машин» электродвигатель, в подобных устройствах, может выполнять функции как стартера, осуществляя вращение коленчатого вала ДВС при запуске и, в определённых условиях, обеспечивая движение автомобиля без его участия, так и генератора, работая на подзарядку аккумуляторных батарей при установившихся режимах движения. Автомобили подобных конструкций отличает высокая топливная экономичность и соответствие современным требованиям экологической безопасности.
Термин «комбинированный двигатель» также применяется для поршневых двигателей, имеющих в своём составе газовую турбину и компрессор (турбокомпрессорный двигатель).
Газотурбинные двигатели, как самостоятельные силовые установки, широкого распространения на автомобильной технике не имеют. Их применение в основном ограничено в качестве вспомогательных агрегатов поршневых двигателей. Например, газотурбинные системы наддува ДВС. Схема турбокомпрессорного двигателя (турбокомпрессора) показана на рис. 2.3 .
Электродвигатели в качестве самостоятельной силовой установки по объективным для сегодняшнего дня причинам на серийных моделях автомобилей практически не используются.

2.1. Классификация поршневых двигателей внутреннего сгорания.

Поршневые двигатели внутреннего сгорания можно условно классифицировать:
1) по способу смесеобразования и виду применяемого топлива; 2) по способу осуществления рабочего цикла; 3) по числу цилиндров и их расположению; 4) по способу охлаждения и смазки деталей и т.п.
По способу смесеобразования двигатели внутреннего сгорания делятся на двигатели с внешним смесеобразованием и двигатели с внутренним смесеобразованием.
Автомобильные двигатели с внешним смесеобразованием работают на лёгком топливе, в основном на бензине или газе. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные, газобаллонные и инжекторные системы питания . Образование топливно-воздушной смеси происходит вне цилиндра двигателя - в смесительной камере карбюратора, в специальном смесителе или непосредственно во впускном коллекторе. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.
Автомобильные двигатели с внутренним смесеобразованием работают, в основном на дизельном топливе, которое относится к тяжёлым видам топлив. К этому же виду топлива относят «солярку», мазут и сырую нефть. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина , где зажигание смеси осуществляется от электрической искры.
По способу осуществления рабочего цикла следует различать двухтактные и четырёхтактные двигатели. У первых, рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала. У вторых, рабочий цикл совершается за четыре хода поршня, т.е. за два оборота коленчатого вала. Под рабочим циклом двигателя следует понимать совокупность процессов, протекающих в цилиндрах двигателя и «заставляющих» его работать.
Подавляющее большинство современных автомобилей оборудуются четырёхтактными двигателями.
По числу цилиндров и их расположению двигатели делятся на двух – и многоцилиндровые с рядным, многорядным, вертикальным, наклонным, звездообразным и горизонтальным расположением цилиндров (рис. 2.4).
Многорядные двигатели можно разделить на: 1) V – образные двухрядные двигатели , с углом развала цилиндров 90 и менее градусов; 2) U – образные двухрядные двигатели ; 3) оппозитные двигатели с расположением цилиндров под углом 180 градусов друг к другу; 4) W – образные трёхрядные двигатели ; и 5) двигатели с большим числом рядов цилиндров.
Многорядное расположение цилиндров двигателя позволяет уменьшить габаритную длину двигателя при сохранении числа цилиндров. Оппозитное, т.е. лежачее расположение цилиндров, уменьшает габаритную высоту двигателя, что в свою очередь позволяет снизить центр тяжести автомобиля и, тем самым улучшить его устойчивость.
По способу охлаждения и смазки деталей различают двигатели с воздушным и жидкостным охлаждением, с принудительной смазкой деталей, смазкой разбрызгиванием и комбинированной смазкой.
Также имеются и иные конструктивные отличия двигателей.

Глава 3. ОБЩЕЕ УСТРОЙСТВО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ.

Автомобильные двигатели имеют следующие механизмы и системы: 1). Кривошипно-шатунный механизм (КШМ); 2). Газораспределительный механизм (ГРМ); 3). Систему охлаждения, смазки, вентиляции картера, питания, зажигания, рециркуляции отработавших газов, пуска и некоторые другие.
Кривошипно-шатунный и газораспределительный механизмы обеспечивают рабочий цикл (работу) двигателя. Системы двигателя, в свою очередь, обеспечивают работу КШМ и ГРМ.
Механизмы и системы двигателя состоят из отдельных деталей и узлов. Основанием для крепления деталей и узлов перечисленных систем и механизмов является корпус двигателя .

3.1 Корпус двигателя.

Поршневой двигатель внутреннего сгорания классической (традиционной) конструкции имеет корпус, состоящий из блока цилиндров (блок-картера) и головки блока цилиндров , закрытых, сверху - клапанной крышкой , снизу - масляным поддоном , спереди и сзади - передней и задней крышками коленчатого вала с самоподжимными сальниками. Корпус может иметь и иную конструкцию. Например, нижняя часть картера может быть разъёмной, и в этом случае корпус будет состоять из трёх составных частей: блока цилиндров (средней части корпуса), головки блока цилиндров (верхней части корпуса) и фундаментной рамы (нижней части корпуса) и соответствующих крышек. Встречаются двигатели с моноблочной конструкцией корпуса , в котором блок цилиндров и головка блока цилиндров выполняются в виде единой, неразъёмной отливки. Многообразие конструкций двигателей различных моторостроительных предприятий, предполагает различные подходы к их ремонту.
Корпусные детали двигателя являются основанием для крепления деталей кривошипно-шатунного и газораспределительного механизмов , а так же узлов и деталей систем смазки, охлаждения, зажигания, питания и др. Детали корпуса двигателя показаны на рис. 3.1.
Блоки цилиндров отливаются из серого легированного чугуна или высококремнистых алюминиевых сплавов (силуминов ). Некоторыми фирмами практикуется изготовление блоков из металлокерамики. Блоки цилиндров двигателя с жидкостным охлаждением имеют двойные стенки, образующие «рубашку охлаждения» . Рубашка охлаждения заполняется охлаждающей жидкостью.
Блоки цилиндров двигателей с воздушным охлаждением цилиндров имеют оребрение. Цилиндры, как правило, заключены в кожух, через который вентилятором системы охлаждения прокачивается воздух.
Головки блоков цилиндров бензиновых и дизельных двигателей легковых автомобилей отливаются из алюминиевых сплавов и реже из чугуна и, за редким исключением, имеют моноблочную конструкцию, т.е. на один ряд цилиндров двигателя устанавливается одна, единая для всех цилиндров, головка. На части дизельных двигателях каждый цилиндр (или пара цилиндров) может иметь собственную головку. Головка через термостойкую прокладку крепится к привалочной плоскости блока цилиндров болтами, если блок чугунный, или гайками через шпильки, если блок алюминиевый. Болты крепления головки изготавливаются из высокопрочных сталей и при небольших диаметрах должны обеспечивать значительные усилия (моменты) затяжки . Усилия затяжки болтов (гаек) крепления головки блока регламентируется производителем и, для большинства автомобилей, в среднем составляют 9,0 – 10,0 кгс x м. Стенки головки блока двойные. Рубашка охлаждения, образованная двойными стенками головки блока соединяется с рубашкой охлаждения блока цилиндров. В головке блока выполняются камеры сгорания. На головке размещают детали газораспределительного механизма, включая распределительный вал (валы), впускные и выпускные клапаны и детали привода клапанов.

3.2. Детали цилиндропоршневой группы (ЦПГ) и
кривошипно-шатунного механизма.

К деталям цилиндропоршневой группы двигателя относятся: цилиндры (гильзы цилиндров); поршни ; поршневые кольца; поршневые пальцы (рис. 3.2).
К деталям кривошипно-шатунного механизма двигателя относятся: шатуны и крышки шатунов ; коленчатый вал и крышки коленчатого вала и маховик . Часть двигателей с малым числом цилиндров (до четырёх) могут иметь балансирные валы , которые также следует относить к деталям КШМ.

Цилиндры . В рядных двигателях, если блок цилиндров отливается из чугуна, цилиндры изготавливаются совместно с блоком. В чугунных блоках многорядных двигателей и блоках выполненных из алюминиевых сплавов цилиндры могут изготавливаться в виде отдельных гильз из чугуна, специальной стали или металлокерамики.
Гильзы, которые устанавливаются непосредственно в рубашку охлаждения блока цилиндров, носят название «мокрых» . Наружная поверхность «мокрых» гильз омывается охлаждающей жидкостью. Мокрые гильзы устанавливаются в отверстия блока с зазором, и удерживаются от перемещения в этом отверстии головкой блока цилиндров. Для надёжного закрепления гильзы головкой блока цилиндров верхний бурт гильзы должен выступать за верхнюю плоскость блока на величину, регламентируемую техническими условиями (для разных типов двигателей эта величина лежит в пределах 0,02 – 0,12мм).
Гильзы, наружная поверхность которых не контактирует с охлаждающей жидкостью, носят название – «сухие гильзы». «Сухие» гильзы устанавливаются в блок с натягом . Сборка соединений с натягом означает, что диаметр втулки (гильзы) больше диаметра посадочного отверстия, в которое эта втулка устанавливается. Величина натяга измеряется в миллиметрах и определяется как разница диаметров сопрягаемых деталей. Натяг обеспечивает неподвижность гильзы при тепловом расширении материала блока в процессе прогрева работающего двигателя.
Внутренняя рабочая часть цилиндра обрабатывается на специальном оборудовании до определённой чистоты (шероховатости) и имеет ровную поверхность, которую называют «зеркалом цилиндра» . При финишной (окончательной) обработке цилиндра на его поверхность наносятся пространственно ориентированные риски, способствующие удержанию в них масла нужного для смазки поршневых колец и поршней.
На рабочие поверхности алюминиевых цилиндров могут наноситься дополнительные покрытия типа «никасил» (никель с кремнием) или кремниевые покрытия, получаемые кислотным травлением поверхности. Рабочие поверхности чугунных цилиндров, как правило, термической обработке не подвергаются и покрытий не имеют. Технология ремонта алюминиевых и чугунных цилиндров может существенно отличаться.
По внутреннему диаметру цилиндры номинальных размеров разбиваются заводом изготовителем на категории (классы) с шагом 0,01 мм. Категории цилиндров обозначаются обычно буквами латинского алфавита (A, B, C…..) и клеймятся на привалочной плоскости картера двигателя или ином месте. Класс (категория, группа) цилиндра, так же может обозначаться краской, цифрой, печатным оттиском, или другим способом.
На рис. 3.3а. показаны корпусные детали рядного шестицилиндрового двигателя, гильзованого мокрыми чугунными гильзами. На рис. 3.3 б. показан блок-картер рядного четырёхцилиндрового двигателя традиционной конструкции с цилиндрами, выполненными заодно с блоком.

Поршни изготавливаются из алюминия легированного кремнием и другими металлами методом литья в кокиль (специальная форма) или методом штамповки с последующей обработкой детали резанием. Для некоторых типов автомобильных двигателей, работающих с высокими удельными нагрузками на детали, поршни изготавливаются из стали и металлокерамики.
Поршни воспринимают давление газов, обеспечивают передачу усилий на шатун и герметизируют камеру сгорания.
Верхняя часть поршня носит название - головка поршня , нижняя направляющая часть поршня называется юбкой поршня . На рис. 3.4. показана конструкция поршня а) бензинового двигателя и б) дизельного двигателя с полураздельной камерой сгорания.
Головка поршня – наиболее усиленная часть поршня, где толщина стенок может достигать нескольких мм. На головке поршня выполнены канавки под поршневые кольца. В нижней канавке маслосъёмного кольца прорезаются дренажные отверстия для отвода масла. В головку поршня, для повышения износостойкости поршня, могут заделываться чугунные вставки, а на днище поршня (верхняя часть головки) и зону «огневого пояса» (часть головки поршня от днища до канавки первого компрессионного кольца) наноситься специальные покрытия. Днище поршня может иметь плоскую, выпуклую, вогнутую и иную форму. В днище поршней части двигателей выполняются углубления под клапаны (цековки) или камеры сгорания.
Юбка поршня . Толщина стенок юбки современных поршней может быть меньше 1,5 мм. Для лучшей приработки поршня в цилиндре на юбку поршня напыляют тонкий слой олова или графитовое покрытие. Для этих же целей на юбке поршня выполняют «накатку» в виде микроканавок глубиной до 0,02 мм, в которых при работе двигателя удерживается масло. Юбки поршней двигателей с цельноалюминиевыми цилиндрами могут покрываться тонким слоем железа. В средней части юбки имеются отверстия под поршневой палец. Стенки юбки у отверстия под поршневой палец имеют утолщения (приливы), именуемые бобышками . У большинства поршней ось отверстия под поршневой палец смещена относительно плоскости симметрии поршня в сторону на 0,5 – 2,5 мм.
Поршни автомобилей российского, европейского и американского производства часто изготавливаются со стальными терморегулирующими вставками в юбке у отверстия под поршневой палец. Вставки, имеющие по сравнению с материалом поршня, меньший коэффициент теплового расширения, препятствуют расширению юбки поршня при нагревании. С той же целью уменьшения теплопередачи от головки поршня к юбке с наружной стороны бобышек выполняются подрезы, которые носят название «холодильников» , а по нижней канавке маслосъёмного кольца или на юбке поршня, сквозные разрезы «Т» - или «П» – образной формы.
Юбка поршня в плане имеет форму овала, большая ось которого перпендикулярна оси отверстия поршневого пальца. В продольном разрезе поршень имеет форму конуса, расширяющегося к юбке. Эллипсность юбки и разница диаметров поршня в верхней и нижней его части может быть более 0,50 мм.
Поршень устанавливается в цилиндр с зазором. Зазор должен компенсировать расширение поршня при нагревании и обеспечивать присутствие масла между трущимися деталями. Величина установочного зазора строго регламентируется заводом изготовителем и в зависимости от конструкции того или иного двигателя лежит в пределах 0,01 – 0,09 мм (большинство двигателей будут нормально работать с зазором 0,04 – 0,06 мм.). Установочный зазор между стенкой цилиндра и поршнем обеспечивается по большей оси овала юбки поршня.
Поршни для одного двигателя не должны отличаться по массе более чем на 2-4 грамма или не более чем на 1 -1,5% среднего арифметического от суммы масс всех поршней данного двигателя.
Заводы выпускают поршни номинального и ремонтного размеров. По наружному диаметру и диаметру отверстия под поршневой палец поршни номинального размера, разбиваются на категории (классы). Информация о размерности и весе поршня, а так же иная информация, выбивается на днище поршня (рис. 3.5).

Клапаны . Основными элементами клапана являются головка и стержень . Клапаны изготавливаются из прутковой стали способом её высадки. Для изготовления впускного клапана применяют хромистую или хромокремнистую сталь. Выпускные клапаны работают в условиях высоких температур, и во избежание быстрого выгорания производятся из жаропрочных сильхромовых или хромоникельмарганцовистых сталей. При этом стержень и головка выпускных клапанов может изготавливаться из разных сталей и соединяться между собой сваркой. Стержень выпускного клапана иногда делается полый. Полость заполняется жидким металлическим натрием, который при работе клапана способствует переносу тепла от сильно нагретой головки клапана в стержень. Поверхность стержня шлифуют и иногда хромируют для повышения износоустойчивости. Рабочей поверхностью тарелки (фаской ) клапан плотно прилегает к седлу, запрессованному в головку блока цилиндров.

Сёдла клапанов для алюминиевых головок блока выполняются из жаропрочного чугуна (реже стали) и устанавливаются в головку с натягом 0,09 – 0,12 мм с последующей завальцовкой материала головки на седло. Неплотная посадка клапана в седле, является основной причиной его выхода из строя (прогорания) и разгерметизации камеры сгорания.

Направляющие втулки клапанов изготавливаются из чугуна, бронзы или металлокерамики и запрессовываются в головку цилиндров блока (или в блок цилиндров, при нижнем размещении клапанов) с натягом 0,04 – 0,08 мм. Через направляющую втулку проходит стержень клапана. Втулка может иметь посадочный поясок для установки сальника клапана (маслосъёмного колпачка ), уплотняющего стержень клапана и предотвращающего попадание излишек масла по стержню клапана в камеру сгорания. При этом для улучшения смазки стержня клапана, по внутренней поверхности направляющей втулки выполняют спиральную канавку («резьбу») с шагом 2 – 3 мм, в которой удерживается масло. Зазор между стержнем клапана и втулкой регламентируется изготовителем и для большинства двигателей устанавливается в пределах 0,04 – 0,08мм у впускных клапанов и 0,06 – 0,12мм у выпускных.

Пружины клапанов возвращают клапан на седло после снятия с него нагрузки от кулачка распределительного вала, удерживают клапан в закрытом положении, обеспечивая его плотную посадку в седле, и предотвращают разрыв кинематической связи между передаточными деталями и клапаном. На один клапан устанавливается одна или две пружины (внутренняя – малая, и наружная – большая). Витки большой и малой пружин имеют противоположную навивку. Пружина надевается на стержень клапана и закрепляется на его конце через опорную тарелку с помощью разрезных конических сухарей.

3.3.3. Привод клапанов и их детали.

В зависимости от конструкции газораспределительного механизма следует различать три основных типа механических приводов клапанов:

  • Привод с помощью коромысел;
  • Привод с помощью рычагов;
  • Привод с помощью цилиндрических толкателей.

Привод клапанов с помощью коромысел (рис. 3.13) имеет следующие детали: коромысло, ось коромысел, штангу, промежуточный толкатель.
Коромысла изготавливаются из чугуна или стали и устанавливаются на оси коромысел через бронзовую втулку или без неё. В зазор между коромыслом и втулкой поступает масло. Одно плечо коромысла опирается через промежуточный толкатель на торец клапана, другое на кулачок распределительного вала или штангу (при нижнем расположении распределительного вала). В плече коромысла, опирающегося на клапан, устанавливается винт с контргайкой или эксцентрик , с помощью которого производится регулировка теплового зазора между торцом клапана и деталями привода клапана. Зазор компенсирует тепловое удлинение стержня клапана при нагревании и в обязательном порядке контролируется при проведении очередного ТО. Величина зазора регламентируется заводом изготовителем и для двигателей различных конструкций составляет 0,15 – 0,40 мм (в среднем 0,20 – 0,25 мм). Ось коромысел представляют собой стальную трубку с точно обработанной поверхностью. Ось (оси) закрепляется на головке блока цилиндров в специальных отверстиях или болтами на крышках распределительного вала.
Привод с помощью рычагов (рис. 3.14) имеет следующие детали: рычаг, опору рычага и прижимную пружину .
Рычаг изготавливается из стали. Поверхность рычага, контактирующая с кулачком распределительного вала, упрочняется закалкой токами высокой частоты или иным образом. Одним плечом рычаг опирается на торец клапана, другим на шаровидную головку опорного болта или втулку гидравлического толкателя (гидрокомпенсатора ). Упорный болт вкручивается в стальную втулку, установленную на резьбе в теле головки блока цилиндров и удерживается от самопроизвольного выкручивания контргайкой. С помощью упорного болта производится регулировка теплового зазора в приводе клапанов.
Привод с помощью цилиндрических толкателей (рис. 3.15). Цилиндрический толкатель представляет собой стальной стаканчик, установленный на стержне клапана в специальном отверстии головки блока. На толкатель через стальную регулировочную шайбу воздействует кулачок распределительного вала (в некоторых конструкциях регулировочная шайба устанавливается под толкатель на торец стержня клапана).
Привод клапанов с гидравлическими толкателями. Гидравлические толкатели могут устанавливаться со всеми типами приводов клапанов (рис. 3.16). В конструкциях, где применяются гидротолкатели, отсутствует зазор в приводе, что обеспечивает безударное набегание и сход кулачка распределительного вала с толкателя, уменьшает шум при работе и устраняет колебания в механизме.

3.3.4. Системы регулирования фаз газораспределения

Для получения оптимальных характеристик двигателя при различных частотах вращения коленчатого вала возникает необходимость управлять временем открытия – закрытия впускных и выпускных клапанов (фазами газораспределения ). При относительном увеличении времени (или степени) открытия впускного клапана улучшается наполнение цилиндра топливно-воздушной смесью. При относительном увеличении времени (или степени) открытия выпускного клапана, улучшается очистка цилиндра от отработавших газов. Существует достаточно много конструкций, позволяющих манипулировать работой клапанов. Схема работы одного из них показана на рис. 3.17 . Конструкция позволяет изменять фазы газораспределения путём изменения высоты подъёма клапанов, что достигается применением распределительного вала с кулачками, имеющими криволинейный профиль. Распределительный вал в подобных конструкциях имеет возможность осевого перемещения.

3.4. Системы охлаждения и смазки двигателя.

При работе двигателя на детали кривошипно-шатунного и газораспределительного механизмов действуют знакопеременные силы, высокая температура, давление, агрессивная среда рабочих, отработанных и картерных газов.
Работа двигателя при температуре охлаждающей жидкости ниже или выше рабочей температуры приводит к ухудшению характеристик двигателя и повышенному износу его деталей. Перегрев двигателя, сопровождающийся закипанием жидкости в системе охлаждения, может иметь и более серьёзные последствия. Из-за уменьшения зазоров в паре трения поршень – цилиндр, усиливается трение между деталями, выгорает смазка, становится возможным заклинивание поршня в цилиндре, «сход» хрома с верхнего компрессионного кольца, появление задиров на юбке поршня и стенках цилиндров, а также частичное оплавление и деформация поршня. Вследствие возникающих напряжений на стыке привалочных плоскостей блока и головки блока возможны деформации этих плоскостей с последующим прогоранием прокладки головки блока. Перегрев головки блока приводит к деформации посадочных отверстий сёдел выпускных клапанов, потере натяга седла вплоть до его выпадения из гнезда.
Последствия масляного голодания могут быть не менее катастрофичны. Отсутствие масла в паре трения шейка коленчатого вала – подшипник, через непродолжительное время приведёт либо к заклиниванию коленчатого вала в опорах, либо к проворачиванию в опорах вкладышей. Недостаток смазки других деталей двигателя ускоряет их износ.
Для эффективной и продолжительной работы двигателя должно быть обеспечено соответствующее охлаждение и смазка его деталей.

3.4.1. Назначение, устройство и работа системы охлаждения.

Тепло от нагретых деталей двигателя на 60 – 70% отводится системой охлаждения двигателя. Оставшиеся 30 – 40% тепла отводятся системой смазки и рассеиваются от корпусных деталей двигателя в подкапотное пространство.
Система охлаждения может быть воздушной или жидкостной .
При воздушной системе охлаждения тепло от деталей двигателя и, в первую очередь, от камер сгорания и цилиндров передаётся обдувающему их воздуху, который циркулирует в воздушной рубашке охлаждения. Рубашку охлаждения образуют рёбра охлаждения цилиндров и кожух, внутрь которого эти цилиндры помещаются (рис. 3.18). Воздух через кожух прокачивается вентилятором системы охлаждения с приводом от электродвигателя или ременным приводом от коленчатого вала двигателя. Количество воздуха на входе в рубашку охлаждения регулируется заслонками, управляемыми водителем вручную, или автоматически, с помощью термостатов или иных специальных приспособлений. Цилиндр воздушного охлаждения и простейшая схема воздушной системы охлаждения показана на рисунке рис. 3.18 .
Жидкостная система охлаждения имеет рубашку охлаждения, радиатор с расширительным бачком и паровоздушным клапаном горловины радиатора (расширительного бачка), жалюзи радиатора, насос охлаждающей жидкости, термостат, вентилятор, соединительные патрубки и шланги. Рубашка охлаждения, радиатор, патрубки и шланги заполняются охлаждающей жидкостью. Общее устройство жидкостной системы охлаждения показано на рис. 3.19 .
При работе двигателя насос, приводимый в движение от коленчатого вала через ременную передачу, создаёт циркуляцию охлаждающей жидкости. Если двигатель «холодный» жидкость не попадает в радиатор и циркулирует по малому кругу рубашки охлаждения. По мере прогрева двигателя часть жидкости, а затем и вся жидкость начинает циркулировать через радиатор по большому кругу рубашки охлаждения. В радиаторе жидкость охлаждается потоком воздуха, создаваемым вентилятором, а при движении автомобиля ещё и встречным потоком воздуха. Охлаждённая жидкость забирается из радиатора насосом и вновь подаётся в рубашку охлаждения.
Насос охлаждающей жидкости традиционной конструкции – центробежного типа, обычно состоит из корпуса и крышки (рис. 3.20). Корпус крепится к блоку цилиндров двигателя и соединяется выпускным отверстием с рубашкой охлаждения блока. Крышка насоса крепится к корпусу и имеет вал, установленный в крышке на подшипнике и, уплотнённый с внутренней стороны сальником. На внутреннем конце вала крепится рабочее колесо - крыльчатка . На внешнем конце вала устанавливается фланец шкива привода насоса и вентилятора. Привод насоса осуществляется от коленчатого вала клиновидным ремнём или зубчатым ремнём ГРМ.
Простота конструкции насоса обусловливает его высокую надёжность. К основным неисправностям насоса относятся неисправность подшипника и/или неисправность сальника вала. Неисправность подшипника, как правило, сопровождается повышенным шумом при работе и люфтами вала насоса. Признаком износа сальника является вытекание охлаждающей жидкости через контрольное отверстие в корпусе и/или по валу насоса наружу рубашки охлаждения двигателя.
Вентилятор системы охлаждения с электрическим приводом включается от датчика управления вентилятором (термореле ) при достижении жидкостью охлаждения верхнего предела рабочей температуры и выключается при охлаждении жидкости до нижнего предела рабочей температуры. Механический привод вентилятора обеспечивает его постоянную работу при работающем двигателе независимо от температуры охлаждающей жидкости.
Термостат регулирует и поддерживает температурный режим двигателя, пропуская жидкость по малому кругу при прогреве холодного двигателя, и по большому кругу, при работе двигателя на рабочих температурах (85 - 110°C).
Термостаты имеют одно- или двух клапанную конструкцию. Термосиловой элемент термостата размещается в пластмассовом или металлическом корпусе термостата и представляет собой закрытый латунный цилиндр, внутри которого находится твёрдый или жидкий наполнитель. Объём наполнителя увеличивается при нагревании. Увеличение или уменьшение объёма наполнителя приводит к перемещению (открыванию – закрыванию) клапанов термостата. На рис. 3.21 показана конструкция двухклапанного термостата.
Жидкостные системы охлаждения автомобилей относятся к типу закрытых и сообщаются с атмосферой только через паровоздушный клапан пробки расширительного бачка. В расширительный бачок жидкость поступает из радиатора вследствие расширения жидкости при нагревании. Закрытая система охлаждения способствует поддержанию в системе повышенного давления (в пределах 1,10 – 1,35 атм.), что необходимо для повышения температуры кипения охлаждающей жидкости выше 100°С.
В качестве охлаждающих жидкостей в системах охлаждения двигателей используются антифризы . Основой антифризов являются этиленгликоль или пропиленгликоль . Этиленгликоль – бесцветная сильно ядовитая жидкость с низкой температурой замерзания, маслянистая на ощупь и сладковатая на вкус. На основе этиленгликоля выпускаются антифризы с торговой маркой «Тосол». Пропиленгликоль меньше вреден для здоровья, но по рабочим характеристикам уступает этиленгликолю. В охлаждающие жидкости добавляются присадки сдерживающие коррозию металла и препятствующие образованию накипи на стенках рубашки охлаждения. Также антифризы имеют низкую температуру начала кристаллизации и обладают смазывающими свойствами. Применять в качестве охлаждающей жидкости воду не рекомендуется, так как при этом сокращается срок службы насоса системы охлаждения и двигателя в целом. Также не следует смешивать между собой антифризы разных производителей.

3.4.2. Назначение, устройство и работа системы смазки.

Система смазки несёт три основных функции: 1) обеспечивает смазку трущихся поверхностей деталей; 2) отводит тепло от деталей; 3) выносит продукты износа из пар трения. По способу подвода масла к деталям различают систему смазывания под давлением (принудительную), смазывания разбрызгиванием и комбинированную систему.
Подавляющее большинство смазочных систем автомобильных двигателей это системы комбинированного типа (рис. 3.22). В комбинированных системах наиболее нагруженные детали двигателя смазываются под давлением, а остальные разбрызгиванием. Под давлением смазываются все (за редким исключением) валы двигателя - коленчатый вал, распределительный вал, вал вспомогательных механизмов (промежуточный вал), балансирные валы, вал турбокомпрессора и др. Пульсирующей струёй через отверстие в шатуне смазываются стенки цилиндров. В некоторых конструкциях пульсирующая струя масла через специальные форсунки подаётся под головку поршня для её охлаждения. Масло, которое попадает на вращающиеся и движущиеся детали двигателя разбрызгивается этими деталями, образуя «масляный туман». В масляном тумане работают и смазываются детали двигателя, к которым масло не подаётся под давлением.
Комбинированная система смазки имеет масляный насос с маслоприёмником и встроенным редукционным клапаном , масляный фильтр, масляный радиатор и резервуар для масла, которым является масляный поддон у двигателей традиционной конструкции, или масляный бак двигателей, имеющих, так называемый «сухой картер».
Масляный насос шестерёнчатого или роторного типа приводится в движение непосредственно от коленчатого вала двигателя либо через распределительный вал или вал вспомогательных механизмов. На двигателях, имеющих сухой картер, привод масляного насоса может осуществляться от электродвигателя. Рабочие шестерни масляного насоса имеют внутреннее (рис. 3.23a) или внешнее (рис. 3.23b) зацепление. Насосы с шестернями внутреннего зацепления более компактные и размещаются в крышке коленчатого вала, а ведущая шестерня посажена на передний носок КВ. Масляный насос нагнетает масло к деталям и создаёт необходимое давление в системе смазки. Величина давления во многом зависит от частоты вращения коленчатого вала. Для двигателей различных конструкций эта величина составляет 0,4 – 0,8 кгс/см2, при оборотах КВ до 1000 об/мин. (оборотах холостого хода), и 4,0 – 5,0 кгс/см2, при оборотах КВ 5000 – 7000 об/мин. (оборотах максимальной мощности). Максимальное давление в системе регулируется посредством редукционного клапана.
Редукционный клапан встроен в корпус насоса и перепускает часть «лишнего» масла с выхода насоса на его вход. Рабочим элементом клапана является подпружиненный шарик, поршенёк или плоская металлическая шайба. Имеют распространение конструкции редукционных клапанов с направляющими поверхностями и без них. Клапаны с направляющими поверхностями, при попадании под клапан посторонних частиц, предрасположены к заклиниванию в закрытом положении. Попадание инородных частиц под клапан, который не имеет направляющей, приводит к его негерметичности. Негерметичность клапана возможна также вследствие износа седла и поверхности клапана.
Масло, поступающее к деталям двигателя от масляного насоса, очищается от механических примесей в масляном фильтре. Различают одинарные и двойные системы очистки масла (рис. 3.24).
Одинарные полнопоточные системы получили наибольшее распространение на двигателях легковых автомобилей. Масло на входе в масляную магистраль фильтруется через единственный масляный фильтр тонкой очистки. Двойная очистка масла подразумевает наличие двух фильтров: полнопоточного фильтра грубой очистки масла, включённого в систему последовательно, и фильтра тонкой очистки, подключаемого в систему параллельно. Через фильтр грубой очистки фильтруется всё масло, имеющееся в двигателе. Через фильтр тонкой очистки масло фильтруется «порционно».
Масляный фильтр тонкой очистки может иметь разборную или неразборную конструкцию (рис. 3.25).
Фильтр разборной конструкции имеет корпус, стационарно прикреплённый к двигателю и съёмный фильтрующий элемент, заменяемый при каждой смене масла.
Неразборные фильтры имеют корпус, фильтрующий элемент и несколько встроенных клапанов. Используются три основных типа клапанов: 1) противодренажный клапан – предотвращает стекание масла из фильтра обратно в картер при неработающем двигателе; 2) обратный клапан (противосливной) – исключает вытекание масла из фильтра при снятии фильтра с двигателя; 3) перепускной клапан – пропускает масло в масляную магистраль минуя фильтрующий элемент в случае повышении давления масла на входе в фильтр. Повышенное давление на входе в фильтр возможно вследствие загущения масла при низких температурах или засорения фильтрующей кулисы. Наличие или отсутствие того или иного клапана у фильтра зависит от конструкции двигателя и способа крепления к нему фильтра.
Совпадение размеров присоединительных элементов фильтров различных производителей не предполагает их автоматической взаимозаменяемости и пригодности использования на всех типах двигателей, к которым они подходят по креплению и габаритам.
Фильтры неразборной конструкции подлежат замене при каждой смене масла в соответствии с требованиями по эксплуатации автомобиля.
Помимо функции смазывания трущихся деталей система смазки несёт функцию охлаждения этих деталей. При этом само масло не должно сильно нагреваться во избежание снижения вязкости и способности удерживаться на деталях а, следовательно, и смазывающей способности. Охлаждение масла происходит в поддоне картера и частично в корпусе наружного фильтра вследствие их обдува встречным потоком воздуха при движении автомобиля и воздухом от вентилятора системы охлаждения двигателя. На части двигателей, имеющих высокую теплонагруженность, для охлаждения масла применяют масляные радиаторы.
Масляный радиатор подключается к масляной магистрали параллельно, снабжается предохранительным клапаном, отключающим радиатор от системы смазки при падении давления ниже 0,4 – 0,8 кгс/см2 и термостатом, включающим/выключающим радиатор в соответствии с заданной температурой.
Масляные радиаторы бывают с воздушным и жидкостным охлаждением. На легковых автомобилях первый тип радиаторов имеет большее применение.
Масляный радиатор с воздушным охлаждением пластинчатого или трубчатого типа, устанавливается перед радиатором системы охлаждения. Охлаждение радиатора происходит потоком воздуха создаваемого вентилятором системы охлаждения.

3.5. Техническое обслуживание двигателя.

Эксплуатация автомобиля в целом и двигателя в частности требует от его владельца выполнения ряда требований, которые предписываются изготовителем. Производитель регламентирует: 1) марку и сорт применяемого топлива, моторного масла и других эксплутационных жидкостей; 2) предельные весовые нагрузки на кузов и шасси; 3) максимальную скорость движения автомобиля и скорость вращения коленчатого вала двигателя; 4) температуру охлаждающей жидкости; 5) давление масла; 6) давление в шинах и т.п. Изготовителем также устанавливается периодичность технического обслуживания автомобиля, его отдельных узлов и агрегатов. Перечень работ выполняемых при очередном техническом обслуживании (ТО) приводится в сервисной литературе по ремонту и обслуживанию. Следование данному перечню обязательно для ремонтного персонала автомастерской.
Следует различать следующие виды технического обслуживания автомобиля: 1) ежедневное ТО; 2) межсезонное ТО; 3) ТО №1; 4) ТО №2. К техническому обслуживанию также можно отнести и предпродажную подготовку автомобиля.
Ежедневное ТО возлагается на владельца автомобиля. Межсезонное ТО, ТО №1 и №2, как правило, проводятся на станциях технического обслуживания (СТО). Целью ТО является предупреждение появлений неисправностей узлов и агрегатов автомобиля, поддержание их в работоспособном состоянии на протяжении установленного срока эксплуатации.
Техническое обслуживание двигателя в целом сводится к ряду следующих работ и операций: 1) очистка двигателя и навесного оборудования от грязи, очистка деталей двигателя от нагара, смолистых и мазевых отложений; 2) проверка и, при необходимости, подтяжка креплений; 3) замена масла, охлаждающей жидкости, топливных, масляных и воздушных фильтров; 4) регулировочные работы.
Грязь на корпусных деталях двигателя препятствует охлаждению двигателя, попадает внутрь двигателя, создаёт помехи работе системы зажигания и других электрических систем автомобиля. Очистка двигателя и навесного оборудования от загрязнений, проводится периодически по мере необходимости.
Для очистки деталей двигателя от нагара, смолистых и мазевых отложений, а также для удаления воды из топливной системы, применяют специальные присадки, добавляемые в период эксплуатации двигателя в топливо и масло с периодичностью один раз через каждые 3 – 5 тысяч км. пробега автомобиля. Перед тем как использовать те или иные присадки для эксплутационных жидкостей необходимо свериться с инструкцией завода изготовителя.
Ослабление креплений и посадок в процессе эксплуатации узла или агрегата связано с воздействием на детали высоких температур, давлений, вибраций и знакопеременных нагрузок.
Необходимость периодической замены эксплутационных жидкостей продиктовано тем, что в процессе работы присадки, содержащиеся в моторном масле и охлаждающей жидкости, расходуются, сами жидкости загрязняются, «изнашиваются» и перестают удовлетворять предъявляемым к ним требованиям. Так как свойства масел и охлаждающих жидкостей не восстанавливаются, их заменяют. Масла заменяют с периодичностью через 8 – 10 тысяч км. пробега автомобиля, охлаждающую жидкость через 50 – 60 тысяч км. пробега или через два года, независимо от пробега. При каждой второй - третьей смене масла целесообразно проводить промывку масляной системы. При смене охлаждающей жидкости целесообразна промывка рубашки охлаждения и удаление с её стенок накипи. Промывка системы охлаждения осуществляется чистой водой с добавлением специальных веществ для удаления накипи. При смене масла меняется и фильтрующий элемент масляного фильтра. Топливные и воздушные фильтры заменяются с периодичностью, продиктованной их изготовителем, что, как правило, составляет 10 – 30 тысяч км эксплуатации.
К основным видам регулировочных работ, проводимым при ТО двигателя можно отнести: 1) натяжение ремня привода генератора и насоса охлаждающей жидкости; 2) проверка совпадения меток фаз газораспределения; 3) натяжение цепи (ремня) привода РВ; 4) регулировка тепловых зазоров в приводе клапанов; 5) регулировка начального угла опережения зажигания; 6) Регулировка топливоподачи, оборотов холостого хода и содержания вредных веществ в отработанных газах (регулировка топливной системы); 7) регулировка угла опережения впрыска топлива (для дизельных двигателей).
На двигателях, имеющих гидронатяжитель цепи (ремня), гидрокомпенсаторы клапанов и систему управления зажиганием без датчика - распределителя, регулировочные операции, обозначенные в пунктах 3) – 5), не требуются.

Глава 4. РАБОТА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ.

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз). При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре - в верхней и нижней части. В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения. Точки в цилиндре, где поршень «останавливается» и изменяет направление своего движения, называются «мёртвыми точками ». Самое дальнее положение поршня в цилиндре относительно оси коленчатого вала (верхнее положение), называют «верхней мёртвой точкой » (в.м.т.), самое ближнее положение поршня в цилиндре относительно оси коленчатого вала (нижнее положение), называют «нижней мёртвой точкой » (н.м.т.).
Чтобы установить поршень (допустим первого цилиндра) в верхнюю мёртвую точку в конце такта сжатия, необходимо повернуть коленчатый вал (например, ключом за гайку храповика) таким образом, чтобы поршень в первом цилиндре занял крайнее верхнее положение, при этом впускные и выпускные клапаны этого цилиндра должны быть закрыты.
Ремонтируя двигатель, или выполняя регулировочные работы, эту операцию ВАМ придётся проделывать множество раз.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом . Рабочий цикл четырёхтактного двигателя осуществляется за два оборота коленчатого вала и состоит из тактов впуска, сжатия, рабочего хода (расширения) и выпуска .
Прежде чем приступить к более подробному рассмотрению рабочего цикла следует познакомиться с некоторыми определениями и терминами, знание и понимание которых даст Вам возможность не только общаться на одном языке с представителями Вашей профессии, но и усваивать материал, изложенный в этой книге и других изданиях по профильной тематике. Часть нужных нам терминов мы уже рассмотрели в предыдущих разделах, о некоторых поговорим позже. Лучше разобраться с рассматриваемой темой поможет рис. 4.1.
Поршень, движущийся в цилиндре, проходит расстояние равное расстоянию между верхней и нижней мёртвыми точками. Это расстояние называется ходом поршня . Двигатели, у которых ход поршня меньше его диаметра, носят название короткоходных . За один ход поршня кривошип КВ проходит расстояние равное двум его радиусам, т.е. совершает полуоборот (180°).
Объем цилиндра, заключённый между крайними положениями поршня в цилиндре (между мёртвыми точками) называют рабочим объёмом цилиндра (Vр). Сумма рабочих объёмов всех цилиндров двигателя, равняется рабочему объёму двигателя , называемому также - литражом двигателя . Сумма рабочего объёма цилиндра (Vр) и объёма камеры сгорания (Vксг) равняется полному объёму (Vп).
Литраж двигателя (рабочий объём) указывается в технической характеристике автомобиля. Сравнивая рабочие характеристики двигателей различных автомобилей можно заметить, что чем больше литраж двигателя, тем выше его мощность и удельный расход топлива (при условии равенства прочих конструкционных особенностей сравниваемых двигателей).
Камерой сгорания называют объём цилиндра над поршнем, при положении поршня в верхней мёртвой точке. Топливно-воздушная смесь в цилиндре сжимается поршнем как раз до этого объёма и сгорает в этом объёме после воспламенения. Отношение объёма смеси, поступившей в цилиндр на такте впуска, к объёму смеси, сжатой до объёма камеры сгорания при такте сжатия, называют степенью сжатия двигателя . Степень сжатия показывает, во сколько раз в цилиндре сжимается смесь и определяется по формуле n = Vп/Vксг.
Степень сжатия современных бензиновых двигателей лежит в пределах 8 – 12, дизельных – в среднем 18 – 22. От степени сжатия во многом зависит топливная экономичность и мощностные характеристики двигателя. Степени сжатия двигателей ограничиваются, у бензиновых двигателей – свойством применяемого топлива (бензина), у дизельных – конструктивными особенностями применяемых материалов, из которых изготавливаются детали двигателя и которые с повышением степени сжатия «обязаны» выдерживать большие нагрузки.
Свойства бензинов описываются октановым числом бензина, характеризующим его антидетонационную стойкость .
Антидетонационная стойкость топлива тем выше, чем больше его октановое число (А –80, 93, 95, 98 и др.). Конструкция двигателя предполагает применение бензина со строго заданным октановым числом (регламентируется заводом изготовителем). Применение бензина с меньшим октановым числом приведёт к работе двигателя с детонацией и, как следствие, к преждевременному износу, или поломке двигателя. Высокооктановые бензины при сгорании выделяют больше тепла, что также следует учитывать при использовании этих бензинов на автомобилях устаревших конструкций.
Детонационное сгорание рабочей смеси (детонация) предполагает нехарактерно быстрое сгорание (взрыв) топливно-воздушной смеси в цилиндре двигателя, приводящее к повышению нагрузок, в первую очередь на детали цилиндропоршневой группы. Скорость распространения фронта пламени, сгорающего в цилиндре топлива, может возрастать с 40 м/сек. до 2000 м/сек. и более. Признаком работы двигателя с детонацией являются характерные и хорошо прослушиваемые стуки, получившие название детонационных стуков . Детонационные стуки возникают вследствие вибрации стенок цилиндра и других деталей ЦПГ под воздействием «ударной волны».
Причиной детонации может быть: 1) применение топлива с октановым числом ниже рекомендованного инструкцией производителя; 2) перегрев двигателя; 3) перегрузка двигателя по оборотам или крутящему моменту; 4) чрезмерно раннее зажигание, а также та или иная совокупность перечисленных явлений.
Работа двигателя с детонацией может сопровождаться перегревом двигателя, падением его мощности и высоким расходом топлива. Иногда появляется искристый или дымный выхлоп из глушителя. Следствием работы двигателя с детонацией могут быть поломки перемычек между кольцами на поршнях, поломки самих колец, оплавление кромки и/или прогорание днища поршня. Лавинообразное повышение температуры в цилиндре вследствие разрушения деталей из-за детонации часто приводит к появлению ещё одного весьма нежелательного явления – калильного зажигания.
Калильное зажигание - самопроизвольное и несвоевременное воспламенения смеси от сильно нагретых деталей двигателя (юбки свечи, кромки поршня, кромки клапана, тлеющего нагара и т.п.). Причина появления калильного зажигания может быть и более тривиальной, как-то несоответствие свечей зажигания данному типу двигателя или повышенное нагароотложение на днищах поршней.
На работающем двигателе, при движении поршня к нижней мёртвой точке силы, действующие на поршень, прижимают его к правой стенке цилиндра, а при движении к верхней мёртвой точке, к левой. При переходе поршня через мёртвые точки происходит изменение опоры поршня (перекладка поршня ) с одной стенки цилиндра на другую.
Изменение направления действия сил в цилиндре приводит к неравномерному износу цилиндра (под овал и под конус с образованием износного уступа в верхней части цилиндра). Неравномерный износ цилиндра следует учитывать при его измерениях и последующем ремонте.
Давление, создаваемое поршнем в цилиндре в конце такта сжатия называется компрессией . Величина компрессии зависит от степени сжатия двигателя и состояния деталей цилиндропоршневой группы и клапанов. И если степень сжатия задаётся конструкцией двигателя, то состояние деталей ЦПГ и клапанов может существенно меняться в процессе эксплуатации, (детали изнашиваются, зазоры между ними увеличиваются). Измеряя компрессию в цилиндрах двигателя, мы косвенно, но достаточно уверенно можем судить о степени изношенности соответствующих деталей или об их неисправности. Диагностика двигателя методом измерения компрессии в цилиндрах широко применяется на практике.
Фазы газораспределения . Данным термином «обзывают» моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек. Этот термин станет Вам понятнее, после того как Вы изучите следующую главу.
Порядок работы цилиндров двигателя определяется порядком чередования одноимённых тактов в цилиндрах двигателя (например, тактов рабочего хода).
Например, у широко распространенных рядных четырёхцилиндровых двигателей, возможны два варианта порядка работы цилиндров: 1 – 2 – 4 – 3 или 1 – 3 – 4 – 2. Иной порядок работы может быть лишь при изменении имеющейся, и являющейся оптимальной для этого типа двигателей, конструкции коленчатого и/или распределительного валов, что не практикуется. Данный порядок цифр означает, что при работе двигателя, такты рабочего хода (равно, как и другие такты) чередуются в цилиндрах в изложенной последовательности.

4.1 Рабочий цикл четырёхтактного бензинового двигателя.

Рабочий цикл четырёхтактного бензинового двигателя состоит из тактов впуска, сжатия, расширения, и выпуска (рис. 4.1).
Такт впуска. При такте впуска поршень в цилиндре перемещается от в.м.т. до н.м.т. Коленчатый вал поворачивается под действием стартера (если производится запуск двигателя) или по инерции от маховика и/или крутящего момента, создаваемого поршнями других цилиндров (если двигатель работает). Впускные клапаны при такте впуска открыты, выпускные закрыты. За счёт разрежения, создаваемого движущимся поршнем, топливно-воздушная смесь из впускного трубопровода через открытые впускные клапаны поступает в цилиндр. Разрежение в цилиндре на такте впуска может достигать 0,07 МПа.
Разряжение в 0,07 МПа является существенной величиной и определяет чувствительность двигателя к негерметичности соединений, через которые в цилиндр поступает «лишний» воздух. «Лишний» воздух обедняет рабочую смесь, что приводит к неустойчивой работе двигателя, особенно на режиме холостого хода.
Температура в цилиндре к концу такта впуска опускается до 130 – 100°С. Клапаны, стенки камеры сгорания и стенки цилиндров, поршни и другие детали ЦПГ охлаждаются новой порцией смеси, заполняющей цилиндр.
Пройдя нижнюю мёртвую точку, поршень начинает движение к верхней мёртвой точке при такте сжатия.
Такт сжатия. Поршень движется к в.м.т., но сжатие смеси начинается не тогда когда поршень начинает движение «вверх» а спустя некоторое время после этого, когда закроется впускной клапан.
Время открытия и закрытия как впускных, так и выпускных клапанов, как правило, не совпадает с моментом прихода поршня в мёртвую точку. Открытие клапанов происходит раньше этого момента, а закрытие позже, что необходимо для более полного наполнения цилиндров свежей порцией горючей смеси и для лучшей очистки цилиндров от отработавших газов. Время открытия и закрытия клапанов удобно выражать в углах поворота коленчатого вала, так как угол поворота проще измерить и проконтролировать. В этом случае говорят об углах опережения открытия и углах запаздывания закрытия клапанов относительно мёртвых точек.
При сжатии рабочей смеси в цилиндре растёт давление и температура, которые достигают максимума при приближении поршня к в.м.т. (8 –14 кгс/см2 и 400 - 500°С, соответственно). В конце такта сжатия (поршень не доходит до в.м.т. на 1 - 30° по углу поворота КВ) смесь в цилиндре воспламеняется от электрической искры и сгорает. Температура горения топливной смеси бензиновых двигателей может достигать 2800°С. Под воздействием температуры давление газов в цилиндре возрастает до 30 – 70 кгс/см2 и поршень начинает движение к н.м.т., совершая полезную работу, т.е. через шатун вращает коленчатый вал двигателя.
Воспламенение (зажигание ) рабочей смеси в камере сгорания происходит раньше прихода поршня в в.м.т. Такое зажигание называется ранним зажиганием . Физический смысл необходимости «раннего» воспламенения смеси упрощённо сводится к следующему: Топливо необходимо сжечь к моменту прихода поршня в верхнюю мёртвую точку, для того чтобы максимальное давление газов начало действовать на поршень с началом его движения к н.м.т. В этом случае мощность двигателя будет наибольшей, а расход топлива оптимальным. Если смесь сгорает до прихода поршня в в.м.т., зажигание слишком раннее, если смесь горит при движении поршня к н.м.т. зажигание позднее (на самом деле процесс горения смеси продолжается некоторое время при такте рабочего хода). Как при чрезмерно раннем, так и позднем зажигании, рабочие характеристики двигателя ухудшаются. Так как с увеличением оборотов коленчатого вала двигателя поршень движется быстрее, то и зажигание должно быть более ранним. Время воспламенения топливной смеси (также как и время открытия – закрытия клапанов) выражается в углах поворота коленчатого вала относительно в.м.т. и называется углом опережения зажигания . В зависимости от оборотов КВ угол опережения зажигания современных двигателей меняется в пределах от 0 до 30 и, иногда более градусов. Угол опережения зажигания, устанавливаемый для оборотов «холостого хода», называется начальным углом опережения зажигания .
Такт расширения . Пройдя верхнюю мёртвую точку, поршень движется к н.м.т. под давлением расширяющихся газов. Процесс сгорания смеси начинается до прихода поршня в в.м.т. в конце предыдущего такта и длится 40 - 60° в углах поворота КВ. Впускные и выпускные клапаны закрыты, но за 45 - 60° до прихода поршня в н.м.т. начинает открываться выпускной клапан. С открытием выпускных клапанов давление в цилиндре быстро снижается до 5 – 3кгс/см2, температура к концу такта опускается до 1300 - 900°С. К моменту перехода поршнем нижней мёртвой точки выпускной клапан будет полностью открыт, а цилиндр «готов» к очистке от отработавших газов.
Такт выпуска . Двигающийся к верхней мёртвой точке поршень, через выпускные клапаны, вытесняет отработавшие газы в систему выпуска двигателя. Вследствие сопротивления выпускной системы и ряда других факторов, часть отработавших газов остаётся в цилиндре и участвует при последующем такте впуска в смесеобразовании, часть газов на впуске искусственно возвращается в цилиндр (рециркулируется ), с целью снижения содержания в отработавших газах окислов азота. Давление в конце такта выпуска немногим больше атмосферного, температура опускается до 400 - 300°С. За 9 - 40° до прихода поршня в в.м.т. открывается впускной клапан. Выпускной клапан при этом продолжает быть открытым вплоть до начала очередного такта впуска, и некоторое время спустя, после того как поршень начнёт движение «вниз».
Угол поворота кривошипа коленчатого вала, при котором впускной и выпускной клапаны одновременно приоткрыты, называется углом перекрытия клапанов . Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек, называют фазами газораспределения . Фазы газораспределения «среднестатистического» бензинового двигателя, в виде круговой диаграммы, показаны на рис. 4.2.
При дальнейшем вращении КВ, рассмотренные нами такты будут чередоваться в той же последовательности.
Как мы видим, протекание того или иного такта в цилиндре двигателя зависит от положения клапанов (открыты или закрыты) и направления движения поршня. Например, такт впуска возможен, если поршень движется вниз, впускные клапаны открыты, а выпускные закрыты. За своевременное открытие – закрытие клапанов «отвечает» распределительный вал, за направление движения поршней – коленчатый вал. Для обеспечения рабочего цикла двигателя работа кривошипно-шатунного и газораспределительного механизмов должна быть синхронизирована. «Синхронизация» обеспечивается установкой коленчатого и распределительного валов в «стартовую позицию» по специальным меткам, выбитым на шкивах валов и корпусных деталях двигателя и получившим название - «метки фаз газораспределения ». Если метки фаз газораспределения, по каким либо причинам не совпадают (например, при сборке двигателя механик не обеспечил правильную установку валов) двигатель будет работать неустойчиво или попросту не заведётся. В худшем случае может произойти поломка двигателя из-за «встречи» (столкновения) клапана и поршня. Типовое расположение меток на шкивах коленчатых и распределительных валов показано на рис. 4.3 .

4.2 Рабочий цикл четырёхтактного дизельного двигателя.

Конструкции двигателей с искровым зажиганием (двигателей Отто) и дизельных двигателей различаются в основном устройством систем питания, типами камер сгорания и материалами, применяемыми для изготовления деталей. Рабочий цикл дизельного двигателя, как и бензинового осуществляется за четыре хода поршня и два оборота КВ, но процессы протекающие в цилиндрах не полностью идентичны. Основные отличия в работе дизельных двигателей, рассматриваются ниже.
Такт впуска . При такте впуска в цилиндры дизельного двигателя поступает атмосферный воздух, прошедший через воздухоочиститель.
Такт сжатия. При такте сжатия, движущийся вверх поршень, сжимает поступивший в цилиндр воздух до объёма камеры сгорания. Вследствие больших чем у бензиновых двигателей степеней сжатия, температура и давление в конце такта у дизелей так же больше и составляет 700 - 900°С и 40 – 50 кгс/см2 соответственно.
Степень сжатия дизельных двигателей не ограничивается свойством топлива. В цилиндре дизеля при такте сжатия сжимается воздух, который, в отличие от топливно-воздушной смеси бензинового двигателя, не склонен к детонации. Именно это и позволяет применять в дизелях вдвое большую степень сжатия, обуславливающую их высокую экономичность.
Незадолго до прихода поршня в В.М.Т. (за 5-15° по углу поворота КВ) в камеру сгорания через форсунку впрыскивается мелко распылённое дизельное топливо, которое испаряется и перемешивается с раскалённым до высокой температуры воздухом. Образовавшаяся топливно-воздушная смесь самовоспламеняется и сгорает.
Такт расширения и такт выпуска. Процессы, протекающие в цилиндрах дизельного двигателя на этих тактах, практически ни чем не отличаются от процессов, рассмотренных ранее на примере бензинового двигателя.

4.3 Работа четырёхтактных многоцилиндровых двигателей.

В многоцилиндровых двигателях рабочий цикл в каждом из его цилиндров протекает за два оборота кривошипа коленчатого вала и четыре хода поршня, т.е. абсолютно так же, как и в одноцилиндровом двигателе, на примере которого мы рассматривали четырёхтактный рабочий цикл. Последовательность чередования тактов в цилиндрах таких двигателей, называемый порядком работы двигателя , будет зависеть от конструкции распределительного и коленчатого валов. Возможный порядок работы многоцилиндровых двигателей с различной компоновкой цилиндров и конструкцией валов, приведены табл. 3.1.
Знание порядка работы цилиндров двигателя необходимо для успешного проведения ремонтных и регулировочных работ.

4.4 Нагруженность и износ деталей.

Умение специалиста диагностировать неисправность, не производя разборки двигателя, равно как и правильно определять её причину, базируется на всестороннем знании этим специалистом устройства двигателя, действующих на детали двигателя сил и глубокого понимания протекающих в двигателе процессов.
Силы, действующие на детали кривошипно-шатунного механизма и создаваемые ими моменты, вызывают износ деталей, который со временем приводит к нарушениям в работе двигателя, а затем, вследствие разрушения деталей, и к его поломке. От того, каким образом и насколько сильно изношены детали, будет зависеть объём выполняемых ремонтных работ, вид проводимого ремонта (капитальный или частичный ), и его стоимость.
На рис. 4.4. показаны силы, действующие на детали кривошипно-шатунного механизма при такте рабочего хода. Рассмотрим некоторые из них.
Движение поршня в цилиндре двигателя при рабочем ходе осуществляется под давлением газов, действующих на днище поршня. Результирующая этого давления – сила P , приложена к центру поршневого пальца и направлена по оси цилиндра. Согласно правилу параллелограмма, сила P может быть разложена на силу F , действующую по оси шатуна и силу N , направленную перпендикулярно стенке цилиндра. На плече B сила N создаёт опрокидывающий момент , который стремится «перевернуть» двигатель в сторону, обратную вращению КВ. Опрокидывающий момент гасится опорами двигателя.
Силу F , перенесённую на ось шатунной шейки можно разложить на касательную силу Т , действующую перпендикулярно кривошипу КВ, и радиальную силу R , направленную по оси кривошипа. Произведение силы Т на плечо A , равное радиусу кривошипа, даёт крутящий момент Мк .
Крутящий момент Мк вызывает вращение коленчатого вала. Сила R создаёт давление на коренные подшипники КВ, вызывая их износ. Сила F нагружает шатунную шейку КВ и шатунные подшипники. Сила N , создаёт давление поршня на одну из стенок цилиндров, изнашивая её. После перехода поршнем н.м.т. поршень совершает перекладку на противоположную стенку цилиндра и сила N меняет своё направление.
Помимо сил, возникающих от давления газов, на детали кривошипно-шатунного механизма действуют силы инерции и центробежные силы. Эти силы также вызывают износ деталей, а их неуравновешенность приводит к сотрясению двигателя во время работы. Для уравновешивания сил, действующих в двигателе, применяются специальные конструкционные решения. Например, противовесы коленчатого вала уравновешивают центробежные силы, действующие на кривошипе, балансирные валы уравновешивают силы, поступательно движущихся деталей, а гасители крутильных колебаний предотвращают поломку коленчатого вала от воздействия на него одноимённых сил. Наибольших суммарных значений силы достигают при переходе поршня через мёртвые точки .
Давление газов при такте рабочего хода, так или иначе, действует на все детали кривошипно-шатунного механизма. Кольца (в большей степени верхние компрессионные) давлением газов прижимает к нижним поверхностям канавок поршня. В то же время, за счёт сил трения о стенки цилиндров, кольца стремятся прижаться к верхним поверхностям канавок. В результате сложения разноимённо действующих сил происходит «закручивание » верхнего компрессионного кольца, сопровождаемое его износом и износом поршневой канавки. Второе компрессионное кольцо подвержено закручиванию в меньшей степени. Маслосъёмные кольца прижимаются к верхним поверхностям канавок и при движении поршня вниз работают на съём масла со стенок цилиндров. Сказанное, поясняет рис. 4.5.
Как мы видим, детали работающего двигателя испытывают значительные нагрузки, они подвергаются воздействию высоких температур, давления, химическому воздействию горючей смеси и отработавших газов, содержащих в своём составе водяной пар, агрессивные составляющие кислот и щелочей. В процессе эксплуатации двигателя его детали изнашиваются естественным путём (естественный износ ) или получают повреждения. Интенсивность естественного износа мала и предельный износ деталей наступает, как правило, к концу срока эксплуатации двигателя, установленного заводом изготовителем. Повреждение или разрушение деталей происходит из-за воздействия на детали нагрузок, превышающих допустимые пределы. Причиной появления таких нагрузок может быть детонация, калильное зажигание, перегрев или перегрузка двигателя, работа деталей двигателя с недостатком смазки, чрезмерный износ деталей и т.п.
Из-за воздействия на детали разнонаправленных сил детали изнашиваются неравномерно, и геометрические формы изношенных деталей могут существенно отличаться от первоначальных форм.
Цилиндр в плане изнашивается под овал, а по высоте под конус и «бочку» с образованием в верхней части цилиндра износного уступа (рис. 4.5.).
Верхняя часть цилиндра по высоте равная, примерно 5 -10 мм, практически не изнашивается, что и обуславливает образование износного уступа. При ремонте двигателя износный уступ может препятствовать выниманию из цилиндра поршня в сборе с шатуном. В этом случае уступ лучше срезать шабером (специальный слесарный инструмент) или сточить на станке.
На рабочей поверхности изношенного цилиндра могут наблюдаться царапины, глубокие риски и задиры. Зеркало цилиндра из-за абразивного изнашивания становится матовым или, наоборот, приобретает «чрезмерный» глянец.
Поршни деформируются из-за тепловых перегрузок, подвергаются абразивному изнашиванию, высота поршневых канавок увеличивается из-за износа их поверхностей, края канавок «заваливаются» (округляются). На юбке изношенного поршня можно наблюдать царапины, риски и наволакивание металла. Результатом работы двигателя с перегревом, детонацией, калильным зажиганием или с совокупностью этих процессов, нередко является оплавление кромки огневого пояса поршней, прогар поршней, разрушение перемычек, появление трещин и других повреждений.
У поршневых колец изнашиваются рабочие и торцевые поверхности. Износ стенок цилиндров, рабочих и торцевых поверхностей колец, верхних и нижних поверхностей канавок поршней и самих поршней приводит к прорыву рабочих и отработавших газов в полость картера. Изношенные кольца не способны эффективно удалять излишки масла со стенок цилиндров и масло сгорает вместе с горючей смесью. Расход масла «на угар» увеличивается с износом деталей ЦПГ. Попаданию излишек масла в камеру сгорания также способствует насосный эффект , проявляющийся в изношенном двигателе, и обусловленный вертикальным «колебанием» колец в канавках поршня. Изменение опоры колец с верхней плоскости канавки на нижнюю плоскость и наоборот, равно как и изменение опоры поршней с одной стенки цилиндра на другую, происходит при переходе поршней через мёртвые точки. Изношенные кольца могут приобретать обратную заточку и работать на съём масла со стенок цилиндра при движении поршней к в.м.т.
Коренные и шатунные шейки КВ изнашиваются под овал. Шейки в значительной степени подвержены абразивному изнашиванию, что приводит к появлению на их изначально глянцевой поверхности рисок, борозд и глубоких царапин, образующихся в случае внедрения в мягкий материал вкладышей инородных частиц. При работе в условиях недостатка смазки на шейках коленчатого вала могут наблюдаться задиры и наволакивание материала вкладышей, а на поверхности вкладышей «вырывы» металла. Износ шеек коленчатого вала и его вкладышей приводит к снижению давления в системе смазки. Уменьшение давления, в свою очередь, ведёт к более интенсивному износу тех же самых деталей, и так далее, по принципу «снежного кома».
Работа деталей с циклическими нагрузками (нагрузка – разгрузка), в том числе и тепловыми (нагрев – охлаждение), может приводить к появлению усталостных трещин с последующей поломкой детали в зоне максимальной концентрации напряжений (например, коленчатые валы часто ломаются в месте соединения щеки и шейки). Подобное разрушение деталей называют усталостным разрушением .
Опоры коленчатого вала и шатуны относятся к «неизнашиваемым» деталям двигателя, т.к. шейки вала контактируют не с самой опорой, а с поверхностью вкладышей. Повреждения опор возможны лишь в результате их перегрева и/или проворачивания вкладышей коленчатого вала в постелях. И то, и другое случается, в основном, по причине недостатка смазки. Проворачивание вкладышей коленчатого вала в постелях шатунов и, в особенности, в опорах блока цилиндров крайне нежелательное событие, приводящее к серьёзным повреждениям деталей и дорогостоящему ремонту с заменой этих деталей (шатунов или блока цилиндров) или с их восстановлением.
Распределительный вал в значительной степени склонен к абразивному изнашиванию. Кулачки РВ подвержены «огранке», на их поверхности и поверхности опор, а так же поверхности ответных деталей (рычагов, коромысел и др.) могут наблюдаться царапины, риски, борозды и задиры. Причиной появления глубоких задиров может быть работа деталей в условиях масляного голодания. Работа изношенного распределительного вала сопровождается характерным стуком, по тональности схожим со «стуком клапанов», но не устраняющимся после регулировки тепловых зазоров в клапанном механизме.
На износ корпусных деталей существенное влияние оказывают тепловые нагрузки. Из-за цикличного воздействия температуры (разогрев – охлаждение) деформируются привалочные плоскости головки блока цилиндров, появляются трещины между сёдлами клапанов и т.п.
Как уже было сказано выше, изнашивание деталей двигателя приводит к ухудшению его работы, что выражается в снижении мощности и крутящего момента, повышенном расходе горюче-смазочных материалов, затруднённом запуске и т.п. При соблюдении условий эксплуатации, заявляемый заводами изготовителями ресурс до капитального ремонта большинства современных двигателей малого – среднего литража составляет 200 – 300 тысяч километров пробега.
При грамотной эксплуатации этот ресурс может быть увеличен, по меньшей мере, на четверть, а при грубых нарушениях условий эксплуатации - уменьшен на три четверти. Под понятие «грамотной эксплуатации» попадают все мероприятия, в конечном счёте, позволяющие замедлить естественный износ деталей двигателя и исключить их поломку. Это комплекс мер и «затёртых» годами правил, при выполнении которых (только-то и всего) Вы совершаете маленькое чудо, существенно продлевая автомобильную жизнь.
Комплекс мер, предотвращающих преждевременный износ деталей, включает:

  • Своевременную (согласно заводской инструкции или раньше) замену масла и других эксплутационных жидкостей;

Эксплутационные свойства масел и топлива должны соответствовать конструктивным особенностям двигателя.

    Периодическое проведение необходимых регулировок двигателя (в соответствии с сервисной книжкой автомобиля);

    Своевременную подтяжку крепежа и замену деталей отработавших свой срок (свечей и высоковольтных проводов системы зажигания, топливных и воздушных фильтров, ремня ГРМ и деталей его натяжения, сальников клапанов и т.п.);

    Периодическое проведение комплекса диагностических мероприятий с целью выявления возможных неисправностей на ранних стадиях развития и последующего их предотвращения с выполнением необходимых ремонтных работ по замене неисправных деталей, узлов или агрегатов.

Подводя итог вышесказанному, можно лишь повторить известную истину о том, что «нет ничего дешевле и эффективнее профилактики», будь то профилактика зубного кариеса или неисправностей такого сложного механизма как двигатель. Повторяйте «избитые» истины чаще, а главное следуйте им, от частого повторения истина не тускнеет и смысл её не меняется.

Полную версию учебного пособия со всеми иллюстрациями смотрите
Также см. далее ЧАСТЬ ВТОРАЯ.

Современный автомобиль, чаще всего, приводится в движение . Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части . Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ) .

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь . Работа этого такта происходит при открытом клапане впуска . Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия . После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт - рабочий ход

Третий такт – рабочий , начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает . Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз . Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной . Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан . Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически . А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Не будет преувеличением сказать, что большинство самодвижущихся устройств сегодня оснащены двигателями внутреннего сгорания разнообразных конструкций, использующими различные принципиальные схемы работы. Во всяком случае, если говорить об автомобильном транспорте. В данной статье мы рассмотрим более подробно ДВС. Что это такое, как работает данный агрегат, в чем его плюсы и минусы, вы узнаете, прочитав ее.

Принцип работы двигателей внутреннего сгорания

Главный принцип работы ДВС основан на том, что топливо (твердое, жидкое или газообразное) сгорает в специально выделенном рабочем объеме внутри самого агрегата, преобразуя тепловую энергию в механическую.

Рабочая смесь, поступающая в цилиндры такого двигателя, подвергается сжатию. После ее воспламенения при помощи специальных устройств возникает избыточное давление газов, заставляющих поршни цилиндров возвращаться в исходное положение. Так создается постоянный рабочий цикл, преобразующий при помощи специальных механизмов кинетическую энергию в крутящий момент.

На сегодняшний день устройство ДВС может иметь три основных вида:

  • часто называемый легким;
  • четырехтактный силовой агрегат, позволяющий добиться более высоких показателей мощности и значений КПД;
  • обладающие повышенными мощностными характеристиками.

Помимо этого существуют и другие модификации основных схем, позволяющие улучшить те или иные свойства силовых установок данного вида.

Преимущества двигателей внутреннего сгорания

В отличие от силовых агрегатов, предусматривающих наличие внешних камер, ДВС обладает значительными преимуществами. Главными из них являются:

  • гораздо более компактные размеры;
  • более высокие показатели мощности;
  • оптимальные значения КПД.

Необходимо заметить, говоря о ДВС, что это такое устройство, которое в подавляющем большинстве случаев позволяет использовать различные виды топлива. Это может быть бензин, дизельное топливо, природный или керосин и даже обычная древесина.

Такой универсализм принес данной принципиальной схеме двигателя заслуженную популярность, повсеместное распространение и поистине мировое лидерство.

Краткий исторический экскурс

Принято считать, что двигатель внутреннего сгорания ведет отсчет своей истории с момента создания французом де Ривасом в 1807 году поршневого агрегата, использовавшего в качестве топлива водород в газообразном агрегатном состоянии. И хотя с тех пор устройство ДВС подверглось значительным изменениям и модификациям, основные идеи этого изобретения продолжают использоваться и в наши дни.

Первый четырехтактный двигатель внутреннего сгорания увидел свет в 1876 году в Германии. В середине 80-х годов XIX столетия в России был разработан карбюратор, позволявший дозировать подачу бензина в цилиндры мотора.

А в самом конце позапрошлого века знаменитый немецкий инженер предложил идею воспламенения горючей смеси под давлением, что существенно повышало мощностные характеристики ДВС и показатели КПД агрегатов подобного вида, которые до этого оставляли желать много лучшего. С тех пор развитие двигателей внутреннего сгорания шло в основном по пути улучшения, модернизации и внедрения разнообразных улучшений.

Основные виды и типы ДВС

Тем не менее более чем 100-летняя история агрегатов данного вида позволила разработать несколько основных видов силовых установок с внутренним сгоранием топлива. Они отличаются между собой не только составом используемой рабочей смеси, но и конструктивными особенностями.

Бензиновые двигатели

Как явствует из названия, агрегаты данной группы используют в качестве топлива различные виды бензина.

В свою очередь, такие силовые установки принято подразделять на две большие группы:

  • Карбюраторные. В таких устройствах топливная смесь перед поступлением в цилиндры обогащается воздушными массами в специальном устройстве (карбюраторе). После чего происходит ее воспламенение при помощи электрической искры. Среди наиболее ярких представителей данного типа можно назвать модели ВАЗ, ДВС которых очень долгое время был исключительно карбюраторного типа.
  • Инжекторные. Это более сложная система, в которой впрыск топлива в цилиндры осуществляется посредством специального коллектора и форсунок. Он может происходить как механическим способом, так и посредством специального электронного устройства. Наиболее продуктивными считаются системы прямого непосредственного впрыска "Коммон Рейл". Устанавливаются почти на все современные автомобили.

Инжекторные бензиновые двигатели принято считать более экономичными и обеспечивающими более высокий КПД. Однако стоимость таких агрегатов намного выше, а обслуживание и эксплуатация - заметно сложнее.

Дизельные двигатели

На заре существования агрегатов подобного вида очень часто можно было слышать шутку о ДВС, что это такое устройство, которое ест бензин, как лошадь, а движется намного медленнее. С изобретением дизельного двигателя эта шутка частично потеряла свою актуальность. Главным образом потому, что дизель способен работать на топливе гораздо более низкого качества. А значит, и на гораздо более дешевом, нежели бензин.

Главным принципиальным отличием внутреннего сгорания является отсутствие принудительного воспламенения топливной смеси. Солярка впрыскивается в цилиндры специальными форсунками, а отдельные капли топлива воспламеняются из-за силы давления поршня. Наряду с преимуществами дизельный двигатель обладает и целым рядом недостатков. Среди них можно выделить следующие:

  • гораздо меньшая мощность по сравнению с бензиновыми силовыми установками;
  • большими габаритами и весовыми характеристиками;
  • сложностями с запуском при экстремальных погодных и климатических условиях;
  • недостаточной тяговитостью и склонностью к неоправданным потерям мощности, особенно на сравнительно высоких оборотах.

Кроме того, ремонт ДВС дизельного типа, как правило, гораздо более сложен и затратен, нежели регулировка или восстановление работоспособности бензинового агрегата.

Газовые двигатели

Несмотря на дешевизну природного газа, используемого в качестве топлива, устройство ДВС, работающих на газе, несоизмеримо сложнее, что ведет к существенному удорожанию агрегата в целом, его монтажа и эксплуатации в частности.

На силовых установках подобного типа сжиженный или природный газ поступает в цилиндры через систему специальных редукторов, коллекторов и форсунок. Воспламенение топливной смеси происходит так же, как и в карбюраторных бензиновых установках, - при помощи электрической искры, исходящей от свечи зажигания.

Комбинированные типы двигателей внутреннего сгорания

Мало кто знает о комбинированных системах ДВС. Что это такое и где применяется?

Речь идет, конечно же, не о современных гибридных автомобилях, способных работать как на горючем, так и от электрического мотора. Комбинированными двигателями внутреннего сгорания принято называть такие агрегаты, которые объединяют в себе элементы различных принципов топливных систем. Наиболее ярким представителем семейства таких двигателей являются газодизельные установки. В них топливная смесь поступает в блок ДВС практически так же, как и в газовых агрегатах. Но поджиг горючего производится не при помощи электроразряда от свечи, а запальной порцией солярки, как это происходит в обычном дизельном моторе.

Обслуживание и ремонт двигателей внутреннего сгорания

Несмотря на достаточно широкое разнообразие модификаций, все двигатели внутреннего сгорания имеют аналогичные принципиальные конструкции и схемы. Тем не менее, для того чтобы качественно осуществлять обслуживание и ремонт ДВС, необходимо досконально знать его устройство, понимать принципы работы и уметь определять неполадки. Для этого, безусловно, необходимо тщательно изучить конструкцию двигателей внутреннего сгорания различных типов, уяснить для себя назначение тех или иных деталей, узлов, механизмов и систем. Дело это непростое, но очень увлекательное! А главное, нужное.

Специально для пытливых умов, которые желают самостоятельно постичь все таинства и секреты практически любого транспортного средства, примерная принципиальная схема ДВС представлена на фото выше.

Итак, мы выяснили, что собой представляет данный силовой агрегат.

Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

Работа поршневого двигателя внутреннего сгорания

Одноцилиндровый ДВС можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

Как функционирует и из чего состоит?

Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

  • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
  • Газораспределительного механизма;
  • Кривошипно-шатунного механизма (далее КШМ);
  • Ряда вспомогательных систем.

КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

Устройство простейшего поршневого двигателя

Вспомогательные системы представлены:

  • Впускной, обеспечивающей поступление кислорода в двигатель;
  • Топливной, представленной системой впрыска топлива ;
  • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
  • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
  • Системой охлаждения , которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
  • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
  • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания , который и сам является сборной деталью.

Устройство поршня ДВС

Пошаговая схема функционирования

Работа ДВС основывается на энергии расширяющихся газов. Они являются результатом сгорания ТВС внутри механизма. Это физический процесс принуждает поршень к движению в цилиндре. Топливом в этом случае могут служить:

  • Жидкости (бензин, ДТ);
  • Газы;
  • Монооксид углерода как результат сжигания твердого топлива .

Работа двигателя — это непрерывный замкнутый цикл, состоящий из определенного количества тактов. Наиболее распространены ДВС двух видов, различающихся количеством тактов:

  1. Двухтактные, производящие сжатие и рабочий ход;
  2. Четырехтактные – характеризуются четырьмя одинаковыми по продолжительности этапами: впуск, сжатие, рабочий ход, и завершающий – выпуск, это свидетельствует о четырехкратном изменении положения основного рабочего элемента.

Начало такта определяется расположением поршня непосредственно в цилиндре:

  • Верхняя мертвая точка (далее ВМТ);
  • Нижняя мертвая точка (далее НМТ).

Изучая алгоритм работы четырехтактного образца можно досконально понять принцип работы двигателя автомобиля .

Принцип работы двигателя автомобиля

Впуск происходит путем прохождения из верхней мёртвой точки через всю полость цилиндра рабочего поршня с одновременным втягиванием ТВС. Основываясь на конструкционных особенностях, смешивание входящих газов может происходить:

  • В коллекторе впускной системы, это актуально, если двигатель бензиновый с распределенным или центральным впрыском;
  • В камере сгорания, если речь идет о дизельном двигателе, а также двигателе, работающем на бензине, но с непосредственным впрыском.

Первый такт проходит с открытыми клапанами впуска газораспределительного механизма. Количество клапанов впуска и выпуска, время их пребывания в открытом положении, их размер и состояние износа являются факторами, влияющими на мощность двигателя. Поршень на начальном этапе сжатия размещён в НМТ. Впоследствии он начинает перемещаться вверх и сжимать накопившуюся ТВС до размеров, определенных камерой сгорания. Камера сгорания – это свободное пространство в цилиндре, остающееся между его верхом и поршнем в верхней мертвой точке.

Второй такт предполагает закрытие всех клапанов двигателя. Плотность их прилегания напрямую влияет на качество сжатия ТВС и ее последующее возгорание. Также на качество сжатия ТВС оказывает большое влияние уровень износа комплектующих двигателя. Она выражается в размерах пространства между поршнем и цилиндром, в плотности прилегания клапанов. Уровень компрессии двигателя является главным фактором, оказывающим влияние на его мощность. Он измеряется специальным прибором компрессометром.

Рабочий ход начинается когда к процессу подключается система зажигания , генерирующая искру. Поршень при этом находится в максимальной верхней позиции. Смесь взрывается, выделяются газы, создающие повышенное давление, и поршень приводится в движение. Кривошипно-шатунного механизм в свою очередь активирует вращение коленвала, обеспечивающего движение автомобиль. Все клапаны систем в это время находятся в закрытом положении.

Выпускной такт является завершающим в рассматриваемом цикле. Все выпускные клапаны находятся в открытом положении, давая возможность двигателю «выдохнуть» продукты горения. Поршень возвращается в исходную точку и готов к началу нового цикла. Это движение способствует выведению в выпускную систему, а затем в окружающую среду, отработанных газов.

Схема работы двигателя внутреннего сгорания , как уже говорилось выше, основана на цикличности. Рассмотрев детально, как работает поршневой двигатель , можно резюмировать, что КПД такого механизма не более 60%. Обусловлен такой процент тем, что в отдельно взятый момент рабочий такт выполняется лишь в одном цилиндре.

Не вся энергия, полученная в это время, направлена на движение автомобиля. Часть её расходуется на поддержание в движении маховика, который по инерции обеспечивает работу автомобиля во время трех других тактов.

Некоторое количество тепловой энергии невольно тратится на нагревание корпуса и отработанных газов. Вот почему мощность двигателя автомобиля определяется количеством цилиндров, и как следствие, так называемым объемом двигателя, рассчитанным по определенной формуле как суммарный объем всех рабочих цилиндров.

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.




Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.



Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.


Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.


Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт - такт впуска


Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.


Второй такт - такт сжатия


Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.


Третий такт - рабочий ход


Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.


Четвертый такт - такт выпуска


Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.


После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм


Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.


Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.


Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм


Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.




Устройство КШМ
Поршень


Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.



Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.


Блок и головка цилиндров


Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.