Виды конструкции подвесок колеса. Направляющие элементы подвесок: назначение, классификация, принцип работы

Знать и понимать, что такое подвеска и какие функции она выполняет, должен каждый водитель. И не важно, управляете ли Вы автомобилем уже на протяжении 10 лет, или только собираетесь получить права. Однако, многие имеют пробелы в этом вопросе, и даже не представляют, на что именно влияет автомобильная подвеска. А ведь именно от нее напрямую зависит тот комфорт и удобство, которые мы ощущаем, управляя собственным автомобилем. Но, вместе с этим, проезжая по пересеченной местности, именно подвеска может стать причиной дискомфорта. Так за что де отвечает этот узел? Из каких деталей он состоит?

Именно на все эти вопросы Вы сможете получить развернутые ответы в статье, которая приводится ниже. Однако, мы уделим внимание не только конструкционным и функциональным особенностям, которыми обладает подвеска автомобиля, но и познакомимся с наиболее распространенными ее типами.

1. Подвеска автомобиля: все самое важное о конструкционных особенностях и выполняемых функциях

В первую очередь стоит разобраться с вопросом, что же из себя представляет автомобильная подвеска? По своей сути это узел или же конструкция из конкретного количества деталей, которые скреплены между собою определенным образом. Для чего же служит подвеска? Благодаря определенной конструкции она соединяет между собою машины с ее колесами, обеспечивая, таким образом, возможность передвижения. В зависимости от элементов и деталей, из которых состоит подвеска, а также особенностей их установки, связь между кузовом и колесами может быть или жесткой, или упругой.

В целом подвеска является элементов ходовой части автомобиля и играет очень важную роль в его функционировании. Рассмотрим наиболее общий список деталей, который составляют целостную конструкцию подвески современных авто:

1. Направляющие элементы. Именно благодаря им колеса соединяются с кузовом и передают на него силу движения. Также, благодаря им определяется характер движения колес относительно самого корпуса автомобиля. Под направляющими элементами стоит понимать всевозможные рычаги крепления и соединения деталей. Они могут быть продольными, поперечными и сдвоенными.

2. Упругий элемент. Является неким «переходником» между колесами и кузовом автомобиля. Именно он воспринимает нагрузку от неровностей дороги, накапливает ее и передает на кузов. Упругие элементы могут изготавливаться как из металла, так и из других доступных и прочных материалов. Металлические – это пружины, рессоры (литые рессоры применяются в основном на грузовых автомобилях) и торсионы (в торсионных типах подвески). Что же касается неметаллических упругих элементов, то они могут изготавливаться из резины (буферы и отбойники, но они в основном используются как дополнение к металлическим устройствам), пневматических (используются свойства сжатого воздуха) и гидропневматических (используется аз и рабочая жидкость) элементов.

3. Гасящее устройство. Иными словами, это и есть автомобильный амортизатор. Нужен он для того, чтобы уменьшать амплитуду колебаний кузова, которые как раз таки и вызывает работа упругого элемента. Основывается работа этого устройства на гидравлическом сопротивлении, которое возникает во время протекания жидкости по калибровочным клапанам из одной полости цилиндра в другую. Хотя в общем амортизатор может состоять как из двух цилиндров (двухтрубный), так и из одного (однотрубный).

4. Благодаря ему является возможным противодействовать стремительно растущему по величине крену, который образуется при осуществлении поворота. Работает это за счет распределения веса по всем колеса машины. По своей сути стабилизатор – это упругая штанга, которая с остальными элементами подвески соединяется через стойки. Он может устанавливаться как на переднюю, так и на заднюю ось автомобиля.

5. Опора колеса. Располагается на задней оси и воспринимает всю нагрузку от колеса, распределяя ее на рычаги и амортизатор. Такое же устройство есть и на передней оси, только называется оно «поворотный клак».

6. Элементы крепления. Благодаря им все элементы и детали подвески соединяются как между собой, так и крепятся к кузову машины. К основным видам креплений, который чаще всего используются в подвеске, следует отнести: жесткое соединение при помощи болтов; соединение с использованием эластичных элементов, которыми являются резино-металлические втулки или же сайлент-блоки); шаровой шарнир.

Вообще существует достаточно большое количество видов и типов подвесок, которые могут выполнять разные функции и иметь разное предназначение и размещение. Возьмем к примеру заднюю зависимую подвеску. Ее конструкция отличается простотой и доступностью для понимания обычным людям: держится на автомобиле она при помощи двух, достаточно прочных цилиндрических пружинах, а также имеет дополнительное крепление на четырех рычагах, которые находятся в продольном положении. В целом эта конструкция имеет довольно не маленький вес, поэтому она довольно сильно отражается на плавности хода автомобиля. Но давайте все же не будем так стремительно забегать вперед, и сначала рассмотрим ряд признаков, за которыми автомобильная подвеска делится на следующие несколько типов:

- двухрычажная и многорычажная;

Активная;

Торсионная;

Зависимая и независимая;

Передняя и задняя.

Пойдем по порядку и более подробно ознакомимся с двух- и многорычажными подвесками автомобиля.

Какие особенности скрываются за двух- и многорычажными автомобильными узлами?

Вообще их название происходит от типа крепления, а если быть еще точнее – то от особенностей конструкции рычагов, которыми эти подвески крепятся к кузову машины. В первом случае крепятся они на два поперечных рычага, один из которых является верхним (он короткий), а второй нижним (он более длинный). Также, специально для уменьшения чувствительности автомобиля и данного узла к толчкам, которые могут поступать при движении по неровной поверхности, между указанными крепежами также находится упругий элемент цилиндрической формы.

Однако, подобная двухрычажная конструкция подвески имеет значительный недостаток, который связан с чрезвычайно быстрым износом покрышек. Происходит это потому, что поперечные движения колес являются совсем незначительными и это отражается на боковой устойчивости колеса. Но вот если говорить о плюсах двухрычажной подвески, то тут нельзя не упомянуть о независимости, которую получает каждое колесо автомобиля. Такая особенность способствует устойчивости автомобиля при езде по неровностям, а также дает возможность создавать качественное и длительное сцепление колес с дорожной поверхностью.

Теперь же давайте попытаемся более подробно разобраться с тем, что же из себя представляет многорычажная схема автомобильной подвески, и чем она отличается от вышеописанной. Все основные отличие можно раскрыть следующими тремя пунктами:

- во-первых , она является более усложненным вариантом двухрычажной подвески;

- во-вторых – ее конструкция включает шаровые шарниры, благодаря которым увеличивается мягкость хода автомобиля;

- третье отличие – это специальные сайлент-блоки или же поворотные опоры, которые крепят на раме. Благодаря этим блокам обеспечивается надежная шумоизоляция автомобильного кузова от находящихся в движении колес.

На такую подвеску можно также добавить продольные и поперечные регулировки, который, к слову, могут устанавливаться отдельно на каждый независимый элемент. Но, не смотря на все те преимущества, которые дает многорычажная подвеска и возможные способы ее модернизации, она имеет не шуточную стоимость. Чтобы дать Вам представление о цене, скажем только то, что такого типа узлы устанавливаются только на автомобили представительских моделей. Правда и ценность такой подвески является очевидной, поскольку она позволяет максимально точно контролировать движение автомобиля по дороге и обеспечивает отличный контакт колесных шин с покрытием дороги.

2. Знакомимся с активным и торсионным типами автомобильных узлов: их основные достоинства и недостатки

Если Вы хотите ориентироваться в том, какие типы подвесок автомобилей являются наиболее современными и чаще всего устанавливаются на суперкары, Вам обязательно стоит ознакомиться с активным и торсионным типами узлов. Начнем по порядку.

Особенного внимание автовладельцев заслуживает Название ее происходит от французского слова «torsion» и переводится на русский язык как «скручивание», которое является основным визитным свойством данного типа автомобильного узла. В чем же кроется секрет и преимущества? Самое интересное, чем отличается конструкция такой подвес – это наличие специального упругого элемента, который изготавливается из легированной стали. Но что же такого особенного в этой стали, спросите Вы?

Дело в том, что перед установкой на автомобиль эта сталь подвергается целому ряду обработок, благодаря которым она приобретает способность закручиваться вокруг продольной оси стержня. При этом, сам упругий элемент может иметь самую разнообразную форму сечения (квадратную или круглую), состоять из одной сплошной пластины или же быть набранным из нескольких отдельных. Самое важное то, что по своей сути он является прототипом распрямленной пружины, однако с более хорошими характеристиками и устойчивостью к механическим воздействиям. То, каким именно образом будет устанавливаться торсионная подвеска, напрямую зависит от типа автомобиля. Если это обычный легковой – то установка производится продольно. Если же речь идет об грузовиках – то торсионный узел будет крепиться поперечно. Как Вы поняли, такой тип подвески является очень удобным при эксплуатации автомобиля. В частности, следует выделить следующие ее достоинства:

- упругий элемент отличается необычайной легкостью, особенно если его сравнивать с обычными пружинами;

Компактность конструкции.

Если попытаться объяснить значение и роль упругих деталей, то следует привести следующий пример. Если Вам вдруг понадобиться выехать на проселочную дорогу с большим количеством глубоких колдобин, имея на своем автомобиле торсионную подвеску, Вы без особых усилий сможете поднять кузов. Для этого Вам будет нужно всего лишь стянуть при помощи специального мотора стержни торсионов, что позволит Вам отрегулировать необходимую высоту дорожного зазора.

Но и это еще не все преимущества такой подвески. Если Вам понадобиться заменить колесо и в этот момент у Вас под рукой не окажется домкрата, с помощью этого устройства Вы без особых трудностей приподнимете кузов автомобиля на трех колесах. Наверное именно по этой причине, наиболее широко торсионный тип автомобильной подвески применяется на военной бронированной технике.

Теперь же уделим немного внимания и активному типу автомобильной подвески. Приступая к знакомству с ее конструкцией сразу приготовьтесь: здесь все кардинально отличается от классической конструкции, нет ни стержней, ни винтовых пружин, ни любых других упругих элементов, которые являются обязательными для других типов подвесок. Для того, чтобы смягчить и полностью нивелировать толчки и другие неприятные «последствия» неровностей дорожного покрытия, на такую подвеску устанавливается специальная пневматическая или же гидравлическая стойка, или же их комбинация. Удивлены? Попробуем разобраться более детально.

По своей сути такая конструкция является ничем иным, как обычным баллоном, внутри которого находится либо жидкость, либо сжатый газ. На вышеупомянутые стойки содержимое баллона распространяется благодаря работе компрессоров. Удобство такого типа подвески напрямую связанно с тем, что ее использование поддается полной компьютеризации. Так, при помощи электроники можно полностью держать под контролем жесткость амортизации автомобиля, и компенсировать перекосы кузова во время движения по склонам и неровным дорогам.

Таким образом, подсуммировать мы можем следующее. Описанные в данном разделе статьи типы подвесок дают водителю огромное количество преимуществ, которые начинаются в комфорте передвижения, и заканчиваются в возможности управлять работой подвески прямо из салона автомобиля. Однако, подойдут они далеко не всем. При чем причиной тому является не только старая модель автомобиля или его изношенность, но и ценовая недоступность.

3. Зависимая и независимая подвеска – на чем рациональнее остановить свой выбор?

Что такое зависимая подвеска наверняка знают те, кто приобрел свой первый автомобиль еще в конце прошлого столетия или же еще до распада СССР. Думаем, это дало подсказку всем – на сегодняшний день зависимая подвеска считается устаревшим вариантом и на современных автомобилях ее нельзя встретить. Единственное, она устанавливается на те марки и модели автомобилей, конструкция которых не меняется вот уже на протяжении нескольких десятков лет. Конечно же, речь может идти об автомобилях, которые мы всегда считали «детищами» отечественного автопрома – Волге и Жигулях. Также, зависимую подвеску сегодня можно встретить на автомобилях УАЗ, а также на более старых и классических моделях Jeep.

Почему же подвеска называется «зависимой»? Попробуем объяснить на очень простом примере: когда, находясь в таком автомобиле, Вы случайно только лишь одним колесом совершаете наезд на кочку, изменяется угол всей оси подвески. Не сложно догадаться, что комфорта от такой езды очень мало. Однако не стоит думать, что производители дошли до маразма, раз до сих пор устанавливают такого рода подвески. Их самое главное преимущество – это простота конструкции, а также ее дешевизна, которая позволяет сбросить цену и со стоимости всего автотранспортного средства.

Есть еще один вариант зависимой подвески автомобиля, который на сегодняшний день уже можно считать «древним». Речь идет об зависимой схеме «де Дион», первые экземпляры которой устанавливались еще на самые первые автомобили. Особенность такой подвески заключается в том, что ее картер главной передачи крепится к кузову автомобиля независимо от моста. Ну а теперь давайте же перейдем к наиболее современному типу подвески, которая является независимой. По сути, ее вполне можно считать полной противоположностью зависимой схемы подвески, поскольку в данном варианте мы получаем возможность перемещения всех четырех колес абсолютно независимо друг от друга. То есть, если одно колесо попадает на кочку, это совсем не значит, что подпрыгивать будут все четыре колеса. К слову, одним из вариантов такой независимой подвески мы уже упоминали, и им является двухрычажная система.

Однако, независимая подвеска может выполняться и в других вариантах, среди которых необходимо обратить Ваше внимание на схему МакФерсона, которая является очень интересным примером. Впервые ее использовать начали еще в далеком 1965 году, а первым автомобилем, на который она была установлена, является легендарный Пежо-204. Как же функционирует такая подвеска и с каких элементов она состоит? На самом деле, здесь нет ничего сложного:

- один единственный рычаг;

Блок, который обеспечивает подвеске стабилизацию поперечной устойчивости;

Второй блок, который состоит из телескопического амортизатора и винтовой пружины.

Конечно же, такому варианту далеко до двухрычажной подвески. Основные недостатки схемы МакФерсона заключаются в том, что при езде в автомобиле довольно сильно ощущается смена развала, особенно если автомобиль едет на высоко поднятой подвеске. Также, дорожные вибрации практически не изолируются.

Надеемся, что наша статья помогла Вам более подробно разобраться с тем, какие именно типы подвесок существуют и чем они отличаются друг от друга. Такая информация пригодится Вам не только в ситуации, когда автомобилю потребуется ремонт, но и при приобретении нового «железного коня». Остается только порекомендовать, быть более внимательным при осуществлении управления автомобиля и всегда прислушиваться тому, что он Вам «говорит». Удачных поездок!

Есть кузов и есть колеса. Возникает вопрос: как подсоединить колеса к кузову, чтобы была возможность управлять автомобилем, передавать непрерывно на ведущие колеса тягу от двигателя и в то же время комфортно преодолевать все неровности дорог с различными покрытиями и без этих самых покрытий? При этом связь колес с кузовом должна быть достаточно жесткой, чтобы автомобиль при выполнении каких-либо маневров просто-напросто не перевернулся. Ответ прост – установить колеса на промежуточное звено. В качестве такого звена используют подвеску.

Элементы подвески должны иметь как можно меньший вес и обеспечивать максимальную изоляцию от дорожных шумов. Помимо этого, следует отметить, что подвеска передает на кузов силы, возникающие при контакте колеса с дорогой, поэтому ее проектируют таким образом, что она обладает повышенной прочностью и долговечностью (смотрите рисунок 6.1).

Рисунок 6.1

В связи с высокими требованиями, предъявляемыми к подвеске, каждый из ее элементов должен проектироваться по определенным критериям, а именно: применяемые шарниры должны легко поворачиваться, но в то же время быть достаточно жесткими и вместе с тем обеспечивать шумоизоляцию кузова, рычаги должны передавать силы, возникающие при работе подвески во всех направлениях, а также воспринимать усилия, которые возникают при торможении и наборе скорости; при этом они не должны быть слишком тяжелыми или дорогими в изготовлении.

Устройство подвески

Составные части

Любая, какой бы она ни была, подвеска должна включать в себя следующие элементы:

  • направляющие/связывающие элементы (рычаги, штанги);
  • демпфирующие элементы (амортизаторы);
  • упругие элементы (пружины, пневматические подушки).

О каждом из этих элементов мы поговорим ниже, так что не пугайтесь.

Классификация подвесок

Для начала давайте рассмотрим классификацию существующих типов подвесок, которые применяются на современных автомобилях. Итак, подвеска может быть зависимой и независимой . При использовании зависимой подвески, колеса одной оси автомобиля связаны, то есть при перемещении правого колеса начнет изменять свое положение и левое колесо, как это наглядно показано на рисунке 6.2. Если же подвеска независимая, то каждое колесо подсоединено к автомобилю отдельно (рисунок 6.3).

Подвески также классифицируют по количеству и расположению рычагов. Так, если в конструкции два рычага, то и подвеска называется двухрычажной . Если рычагов более двух, то подвеска - многорычажная . Если два рычага, к примеру, будут расположены поперек продольной оси автомобиля, то в названии появится дополнение - «с поперечным расположением рычагов» . Однако конструкций огромное множество, потому рычаги могут располагаться и вдоль продольной оси автомобиля, тогда в характеристиках напишут: «с продольным расположением рычагов» . А если не так и не этак, а под определенным углом к оси автомобиля, то говорят, что подвеска с «косыми рычагами» .

Интересно
Нельзя сказать, какая из подвесок лучше или хуже, все зависит от назначения автомобиля. Если это грузовик или самый брутальный внедорожник, то для простоты, жесткости и надежности конструкции незаменимой будет зависимая подвеска. Если же это легковой автомобиль, главными качествами которого являются комфорт и управляемость, то нет ничего лучше, чем подвешенные по отдельности колеса.


Рисунок 6.2


Рисунок 6.3


Рисунок 6.4

Подвески классифицируются и по типу применяемого демпфирующего элемента - амортизатора. Амортизаторы могут быть телескопическими (напоминают удочку «телескоп» или подзорную трубу), как на всех современных автомобилях, или рычажными , которых сейчас при всем желании не найдешь.

И последний признак, по которому подвески относят к разным классам, - это тип применяемого упругого элемента. Это может быть рессора, витая пружина, торсион (представляет собой стержень, один конец которого закреплен и никак не двигается на кузове, а второй конец подсоединен к рычагу подвески), пневматический элемент (основанный на способности воздуха сжиматься) или гидропневматический элемент (когда воздух выступает дуэтом с гидравлической жидкостью).

Итак, подведем итоги.
Подвески различают по следующим признакам:

  • по конструкции: зависимая, независимая;
  • по количеству и расположению рычагов: однорычажная, двухрычажная, многорычажная, с поперечным, продольным и косым расположением рычагов;
  • по типу демпфирующего элемента: с телескопическим или рычажным амортизатором;
  • по типу упругого элемента: рессорная, пружинная, торсионная, пневматическая, гидропневматическая.

В дополнение ко всему вышесказанному следует отметить, что подвески также различают и по управляемости, то есть по степени контролируемости состояния подвески: активные, полуактивные и пассивные.

Примечание
К активным относятся подвески, в которых может регулироваться жесткость амортизаторов, дорожный просвет, жесткость стабилизатора поперечной устойчивости. Управление такой подвеской может быть как полностью автоматическим, так и с возможностью ручного контроля.
Полуактивные - это подвески, возможности управления которыми ограничены корректировкой высоты дорожного просвета.
Пассивные (неактивные) – это обычные подвески, выполняющие свою роль в чистом виде.

Хочется еще сказать о подвесках с электронно-управляемыми амортизаторами, которые способны изменять свою жесткость в зависимости от дорожных условий. Наполнены данные амортизаторы не обычной, а специальной жидкостью, которая под воздействием электрического поля может изменять свою вязкость. Если упрощенно представить принцип действия, то получится следующее: когда тока нет, автомобиль очень мягко проезжает по всем неровностям, а после подведения тока по неровностям ехать будет не очень приятно, зато станет очень приятно управлять автомобилем на скоростных трассах и в поворотах.

Поворотный кулак и ступица колеса

Поворотный кулак

Поворотный кулак является связующим звеном между рычагами подвески и колесом. Схематическое изображение этой детали приведено на рисунке 6.4. В общем случае такую деталь называют цапфой. Однако, если цапфа установлена на подвеске с управляемыми колесами, то она называется поворотным кулаком. Если колеса не управляемые, то остается название «цапфа».

Если поворотный, значит поворачивается, участвует в процессе изменения направления движения. Именно к поворотному кулаку крепятся элементы рулевой трапеции или рулевые тяги (об этих элементах подробно описано в главе «Рулевое управление»). Поворотный кулак - массивная деталь, так как воспринимает все удары и вибрации от дороги.

Конструкция поворотных кулаков зависит от типа привода автомобиля. Так, если привод комбинированный (когда колеса и управляемые, и тяговые одновременно, что характерно для переднеприводных автомобилей), то поворотный кулак будет иметь сквозное отверстие для внешней части приводного вала, как показано на рисунке 6.4. Если же колеса только управляемые, то поворотный кулак будет иметь опорную ось с конусным сечением, как, например, показано на рисунке 6.7.

Ступица колеса

Ступица колеса (показана на рисунке 6.4) является связующим звеном между колесом и поворотным кулаком/цапфой. Поворотный кулак только передает усилия на элементы подвески, сам же не вращается. Для обеспечения свободного вращения колеса необходима ступица. На ступицу устанавливается тормозной диск (или тормозной барабан, о которых подробно сказано в главе «Тормозная система ».), к ней же крепится колесо, а ступица, в свою очередь, установлена в поворотный кулак в случае, показанном на рисунке 6.4, на подшипниках, обеспечивающих плавное вращение колеса.

Примечание
Тормозной диск конструктивно может быть выполнен как одно целое со ступицей колеса.
В зависимости от конструкции подшипники ступицы могут быть роликовыми или шариковыми.

Полезно знать
Всегда после снятия и установки ступицы или замены подшипников необходимо производить регулировку натяга (что это, смотрите в примечании ниже) подшипников ступицы.

Примечание
Если простым языком, то натяг - это усилие, с которым сжали подшипники ступицы при затягивании гайки крепления. Величина натяга влияет на силу сопротивления вращению колеса. Каждый производитель дает свои рекомендации по поводу величины усилия сопротивления вращению колеса. Поэтому при выполнении ремонтных работ, связанных со снятием ступицы, всегда интересуйтесь, выполняли или нет регулировку натяга подшипника ступицы колеса.

Направляющие/связывающие элементы

С помощью направляющих и связывающих элементов колесо крепится к кузову или подрамнику. Эти элементы крепления разделяются на рычаги и штанги. Штанга - это пустотелый профиль, обычно круглого сечения, реже - квадратного. По сути, это просто трубка с приваренными к обоим концам проушинами для установки в них резиновых втулок, с помощью которых выполняется крепление к кузову и поворотному кулаку или цапфе. Рычаги - конструктивно более сложные элементы. Они могут быть сварены из трубок (такая конструкция применяется, в основном, в спортивных автомобилях), отлиты, например, из алюминиевого сплава (чтобы были легче) или отштампованы из листового металла (чтобы были дешевле). Количество и расположение рычагов влияют на плавность хода и управляемость автомобиля.

Подвеска Мак-Ферсона

Пожалуй, одна из самых распространенных в настоящее время конструкций подвесок - со стойкой Мак-Ферсона (рисунок 6.5), она же «свеча» (самый яркий пример - это передняя подвеска у ВАЗ 2109 и ему подобных). Она отличается простотой конструкции, дешевизной, ремонтопригодностью (это значит, ремонтировать ее будет несложно) и относительной комфортностью. Так называемая амортизаторная стойка сверху крепится к кузову и имеет возможность вращаться в опоре, а снизу - к поворотному кулаку. Поворотный кулак, в свою очередь, подсоединен к нижнему поперечному рычагу подвески, который соединен с кузовом - все, кольцо сомкнулось. Иногда для придания дополнительной жесткости в конструкцию вводят продольную тягу, подсоединяя ее к поперечному рычагу (снова, как пример, ВАЗ 2109). На стойке есть плечо, к которому крепится рулевая тяга. Так, при управлении автомобилем вращается вся стойка, поворачивая колесо, не прекращая сжиматься и растягиваться, преодолевая неровности дорожного покрытия. Но следует обратить внимание и на недостатки однорычажной (а в описанном выше случае она именно однорычажная) подвески. Это «клевки» автомобиля при торможении и небольшая энергоемкость подвески.


Рисунок 6.5

Примечание
Под «клевком» понимают следующее: при интенсивном торможении вес автомобиля смещается в сторону передка, из-за этого передняя часть проседает, а после остановки резко возвращается в исходное положение, вот это характерное движение на грани встряски и называют «клевком». Энергоемкость подвески – это прочность всей конструкции, способность сопротивляться всем ударам и моментам, возникающим при этих ударах без пробоев.
Пробой подвески – замыкание, контакт металлических элементов подвески друг с другом с резко возрастающей ударной нагрузкой - обычно при наезде на дорожное препятствие внушительных размеров заявляет о себе характерным звонким металлическим звуком со стороны опоры (или опор) подвески.

Подвеска на двух поперечных рычагах

Чтобы избавиться от «клевков», улучшить управляемость и повысить энергоемкость, применяют одну из самых старых конструкций подвески, которая до наших времен дошла со значительными преобразованиями – подвеску на двух поперечных рычагах (пример которой приведен на рисунке 6.6).


Рисунок 6.6

В данной конструкции присутствует рычаг опорный (нижний) и рычаг направляющий (верхний), которые крепятся к поворотному кулаку. На опорный рычаг установлена нижняя часть амортизаторной стойки либо же отдельно пружина и отдельно амортизатор. Верхний рычаг выполняет функцию направления движения колеса в вертикальной плоскости, минимизируя его отклонения от вертикали. То, как установлены рычаги друг относительно друга, имеет непосредственное влияние на поведение автомобиля во время его движения. Обратите внимание на рисунок 6.6. Здесь верхний рычаг максимально отведен от нижнего рычага вверх. Чтобы уменьшить воздействие усилий на кузов автомобиля при работе подвески, пришлось удлинить поворотный кулак. К тому же, этот рычаг установлен под определенным углом к горизонтальной оси автомобиля во избежание пресловутых «клевков». Суть остается та же, а внешний вид, геометрические и кинематические параметры изменяются.

Примечание
Несмотря на все достоинства, один очень существенный недостаток в данной конструкции все же существует - это отклонение колеса от вертикальной оси при работе подвески. Решение вроде бы есть – удлинение рычагов, однако это хорошо, если автомобиль рамный, а вот если кузов несущий, то удлинять некуда - дальше моторный отсек. Вот и подходят к решению нестандартно: нижний рычаг стараются сделать как можно длиннее, а верхний установить как можно дальше от нижнего.
Следует отметить тот факт, что, если пружина и амортизатор или амортизаторная стойка своим нижним концом крепятся к верхнему рычагу (как в случае, изображенном на рисунке 6.7), то опорным становится именно верхний рычаг, нижний в таком случае переходит в разряд направляющих.


Рисунок 6.7

Многорычажные подвески

Когда ресурсы по развитию какого-либо одного плана решения проблемы исчерпываются, а цели не достигнуты, конструкцию приходится усложнять, несмотря на увеличение стоимости. Именно по такому пути пошли конструкторы при разработке многорычажной подвески. Да, она получилась дороже двух- или однорычажной, однако по итогу получили практически идеальное перемещение колеса - без отклонений в вертикальной плоскости, отсутствие эффекта подруливания при прохождении поворотов (об этом ниже) и стабильность.

Задняя полузависимая подвеска

Примечание
Практически все схемы, описанные выше, могут применяться и в конструкции задней подвески.

Это одно из самых простых, дешевых и надежных решений для задней подвески, однако не лишенное многих недостатков. Суть конструкции состоит в том, что два продольных рычага, на которые опираются пружины и амортизаторы, соединили балкой, как показано на рисунке 6.8. Частично подвеска получилась зависимой, поскольку колеса связаны между собой, однако за счет свойства балки колеса имеют возможность перемещаться друг относительно друга.


Рисунок 6.8

Демпфирующие элементы

Демпфирующие элементы - это элементы подвески, призванные гасить колебания подвески при движении автомобиля. А зачем гасить колебания? Упругий элемент подвески, каким бы он ни был, призван сводить на нет все ударные нагрузки, возникающие при наезде колеса на препятствия на дороге. Но будь то пружина или воздух в пневмоподушке, после сжатия или разжатия упругого элемента сразу последует возврат в исходное положение. Сожмите в руках любую пружинку, а потом отпустите ее, и она полетит настолько далеко, насколько позволят ей силы, возникшие при разжатии. Еще пример: возьмите обычный медицинский шприц, наберите в него чистого воздуха, зажмите выходное отверстие и попробуйте переместить поршень - он переместится, но до определенного момента (пока у вас сил хватит сжимать воздух), после отпускания штока воздух начнет расширяться, возвращая поршень в исходное положение. Так и в автомобиле: при наезде автомобиля на какое-либо препятствие пружина в подвеске сожмется, но потом под действием упругих сил начнет разжиматься. Поскольку автомобиль имеет определенную массу, то пружина, распрямляясь, вынуждена будет преодолевать инерцию автомобиля, что будет выражаться покачиванием с постепенным затуханием колебаний. Ввиду постоянных разнонаправленных перемещений подвески такое раскачивание недопустимо, так как в определенный момент может наступить резонанс, что в конечном итоге просто-напросто разрушит подвеску частично или полностью. Чтобы не допустить таких колебаний, в конструкцию подвески внедрили еще один элемент - амортизатор.

Принцип работы амортизатора прост. Попробуем объяснить это на примере того же шприца. Но в этот раз будем набирать в него, к примеру, воду. Скорость набора и слива жидкости в данном случае ограничена вязкостью воды и пропускной возможностью отверстия шприца.

В подвеске объединили амортизатор с пружиной (или другим упругим элементом) и получили отличный «механизм», в котором один элемент не позволяет раскачиваться, а второй воспринимает все нагрузки.

Ниже рассмотрим демпфирующие элементы подвески на примере телескопического амортизатора.

Самыми распространенными типами демпферов на легковых автомобилях являются двухтрубные и однотрубные газонаполненные амортизаторы.

Примечание
У любого амортизатора есть две важнейшие характеристики: сила сопротивления на отбой и на сжатие.

Интересно
Сила сопротивления амортизатора на сжатие меньше, чем сила сопротивления на отбой. Сделано это для того, чтобы при наезде на препятствие колесо как можно легче и быстрее переместилось вверх, а при проезде выбоины оно как можно медленнее опускалось в нее. Таким образом достигаются наилучшие показатели по комфорту езды.

Двухтрубные гидравлические амортизаторы

Название амортизатора данного типа говорит само за себя. Простейший вид амортизатора - это две трубы, внешняя и внутренняя (представлен на рисунке 6.9). Внешняя труба еще выполняет роль корпуса всего амортизатора и резервуара для рабочей жидкости. Внутренняя труба амортизатора называется цилиндром. Внутри цилиндра установлен поршень, выполненный как одно целое со штоком. В поршне есть отверстия, в которые установлены односторонние клапаны, часть клапанов направлена в одну сторону, остальные – в обратную. Одни клапаны называются компенсационными, другие – клапанами отбоя.


Рисунок 6.9

Примечание
Односторонний клапан - это клапан, открывающийся только в одном направлении.
Применительно к амортизатору клапаны называются клапанами отбоя и сжатия.
Отбой и сжатие - это растягивание и сжатие амортизатора соответственно.

Полость между цилиндром и корпусом называется компенсационной. Эта полость, а также цилиндр амортизатора заполнены рабочей жидкостью. Цилиндр с одной стороны имеет отверстие для штока поршня, а с другой стороны заглушен пластиной с отверстиями и односторонними клапанами в них - компенсационными и клапанами сжатия.

При перемещении поршня в цилиндре масло перетекает из полости под поршнем в полость над поршнем, при этом часть масла выдавливается через клапан, находящийся снизу цилиндра. Часть жидкости через клапаны сжатия перетекает во внешний компенсационный резервуар, где сжимает воздух, прежде находившийся под атмосферным давлением в верхней части корпуса амортизатора. Поскольку эта жидкость имеет определенную вязкость и текучесть, то быстрее, чем предопределено, процесс перетекания проходить не будет. То же самое, только в обратном направлении, происходит на ходе отбоя, когда поршень перемещается вверх. При этом задействуются компенсационные клапаны пластины цилиндра и клапаны отбоя в поршне.

Однако данная конструкция имеет один, но существенный недостаток: при длительной работе амортизатора рабочая жидкость нагревается, начинает смешиваться с воздухом в компенсационном резервуаре и вспенивается, в результате происходит потеря эффективности работы и выход из строя.

Двухтрубные газо-гидравлические амортизаторы

Чтобы решить проблему вспенивания рабочей жидкости в амортизаторе, решили в компенсационный резервуар вместо воздуха закачать инертный газ (обычно используют азот). Давление может колебаться от 4 до 20 атмосфер.

Принцип работы ничем не отличается от двухтрубного гидравлического амортизатора, с той лишь разницей, что рабочая жидкость не вспенивается так интенсивно.

Однотрубные газонаполненные амортизаторы

Отличительной особенностью данных амортизаторов от вышеупомянутых конструкций является то, что у них есть только одна труба - она выполняет роль и корпуса, и цилиндра. Устройство такого амортизатора отличается только тем, что в нем нет компенсационных клапанов (рисунок 6.10). В поршне есть клапаны отбоя и сжатия. Однако особенностью данной конструкции является плавающий поршень, отделяющий резервуар с рабочей жидкостью от камеры с газом, который закачан под очень высоким давлением (20–30 атмосфер).

Однако не стоит думать, что, если корпус не двойной, значит цена ниже. Так как всю работу выполняет только поршень, то львиную долю цены амортизатора составляет стоимость расчета и подбора поршня. Правда, результатом столь трудоемких работ является повышенная эффективность всех характеристик амортизатора.

Одно из преимуществ данной схемы состоит в том, что рабочая жидкость в амортизаторе значительно лучше охлаждается ввиду того, что в корпусе всего одна стенка. Следующими преимуществами можно назвать уменьшение массы и габаритов и возможность установки «вверх тормашками» - таким образом можно снизить величину неподрессоренных масс *.

Примечание
* Неподрессоренной массой является все, что находится между поверхностью дороги и элементами подвески. Углубляться в теорию подвески и колебаний не будем, скажем лишь, что, чем меньше неподрессоренная масса, тем меньше ее инерционность и тем быстрее колесо вернется в исходное положение после наезда на какое-либо препятствие.

Однако существуют и значительные недостатки газонаполненных амортизаторов, такие как:

  • уязвимость для внешних повреждений: любая вмятина обернется заменой амортизатора;
  • чувствительность к температуре: чем она выше, тем выше давление газового подпора и жестче работает амортизатор.

Упругие элементы

Пружины

Самым простым и часто используемым упругим элементом, применяемым в конструкции подвески, является пружина. В наиболее простом варианте используется цилиндрическая витая пружина, но, вследствие гонки за оптимизацией и улучшением эффективности работы подвески, пружины могут принимать самые разнообразные формы. Так, пружины могут быть бочкообразными, вогнутыми, конусообразными и с переменным диаметром сечения витка. Сделано это для того, чтобы характеристика жесткости пружины стала прогрессивной, то есть при увеличении степени сжатия упругого элемента должно увеличиваться и его сопротивление этому сжатию, причем функция зависимости должна быть нелинейной и непрерывно возрастающей. Пример графика зависимости возникающей жесткости от величины сжатия приведен на рисунке 6.12.

Бочкообразные пружины иногда называют «миниблоком» (пример таких пружин приведен на рисунке 6.13). Такие пружины при тех же характеристиках жесткости, что и у обычной цилиндрической пружины, имеют меньшие габаритные размеры. Также исключается контакт витков при полном сжатии пружины.

Рисунок 6.12

Рисунок 6.13

Рисунок 6.14

В обычных цилиндрических витых пружинах эта зависимость линейная. Чтобы как-то решить эту проблему, стали изменять сечение и шаг витка.

Изменяя форму пружины (рисунок 6.14), стараются приблизить жесткость к идеальной, ориентируясь по графику (рисунок 6.12).

Рессоры

Рессора - самый простой и древний вариант упругого элемента в подвесках автомобилей. Чего проще: взять несколько стальных листов, соединить их вместе и подвесить на них элементы подвески. К тому же, рессора обладает свойством гашения колебаний за счет трения между листами. Рессорная подвеска хороша для тяжелых внедорожников и пикапов, в отношении которых нет особых требований к комфорту передвижения, но есть высокие требования к грузоподъемности.

Также рессора до недавнего времени применялась и в таком автомобиле, как Chevrolet Corvett, правда, там она располагалась поперечно и была выполнена из композитного материала.


Рисунок 6.15

Торсион

Торсион - тип упругого элемента, который часто применяется для экономии места. Он представляет собой стержень, один конец которого подсоединен к рычагу подвески, а второй зажат с помощью кронштейна на кузове автомобиля. Когда рычаг подвески перемещается, этот стержень скручивается, выступая в роли упругого элемента. Основное преимущество заключается в простоте конструкции. К недостаткам можно отнести то, что торсион для нормальной работы должен быть достаточно длинным, но из-за этого возникают проблемы с его размещением. Если торсион расположен продольно, то он «съедает» место под кузовом или внутри него, если он поперечный - уменьшает параметры геометрической проходимости автомобиля.


Рисунок 6.16 Пример подвески с продольно расположенным торсионом (длинным стержнем, закрепленным спереди на рычаге, сзади – на поперечине кузова).

Пневматический элемент

По мере загрузки автомобиля ручной поклажей и пассажирами, задняя подвеска проседает, уменьшается дорожный просвет, возрастает вероятность пробоя подвески (о том, что это такое, мы говорили выше). Чтобы этого избежать, сначала решили заменить пружины задней подвески пневматическими элементами (пример такого элемента представлен на рисунке 6.17). Данные элементы представляют собой резиновые подушки, в которые закачан воздух. Если задняя подвеска нагружена, в пневматических элементах поднимается давление воздуха, положение кузова относительно поверхности и ход подвески остаются неизменными, вероятность замыкания элементов ходовой части сводится к минимуму.


Рисунок 6.17


Рисунок 6.18

Для расширения возможностей пневмоэлементов установили мощные компрессоры, электронный блок управления и предусмотрели возможность автоматического и ручного управления подвеской. Так получилась полуактивная подвеска, которая, в зависимости от режима движения и дорожной обстановки, автоматически изменяет величину дорожного просвета. После введения в конструкцию амортизаторов с изменяемой жесткостью на выходе получили активную подвеску.

Подрамник

Чтобы обеспечить шумо- и виброизоляцию детали подвески часто крепятся не к самому кузову, а к промежуточной поперечине или подрамнику (пример которого приведен на рисунке 6.18), образующему вместе с элементами подвески единую сборочную единицу. Такая конструкция упрощает сборку на конвейере (а значит, снижает себестоимость автомобиля), регулировочные работы и последующий ремонт.


Рисунок 6.19

Стабилизатор поперечной устойчивости

При прохождении поворотов автомобиль наклоняется в сторону, противоположную повороту, - на него действуют центробежные силы. Есть два пути минимизации данного эффекта: сделать очень жесткую подвеску или установить стержень, связывающий колеса одной оси, особым образом. Первый вариант интересен, но чтобы бороться с кренами автомобиля в поворотах, пришлось бы сделать очень жесткую подвеску, что свело бы на нет показатели комфорта автомобиля. Еще один вариант - установка активной подвески со сложным электронным управлением, которая в поворотах делала бы подвеску внешних колес более жесткой. Но этот вариант очень дорогостоящий. Потому пошли по простейшему пути – установили стержень, которым связали через стойки или напрямую рычаги подвесок колес с обеих сторон автомобиля (смотрите рисунок 6.19. Таким образом, при прохождении поворота, когда колеса, находящиеся с внешней стороны относительно центра поворота, поднимаются вверх (относительно кузова), стержень скручивается и как бы подтягивает к кузову внутреннее колесо, тем самым стабилизируя положение автомобиля. От этого и название - «стабилизатор поперечной устойчивости ».

Основными недостатками обычного стабилизатора поперечной устойчивости являются ухудшение плавности хода и снижение общего хода подвески из-за небольшой, но все таки связи между колесами одной оси. Первый недостаток бьет по автомобилям класса люкс, второй – по внедорожникам. В эпоху электроники и технологических прорывов конструкторы не могли не воспользоваться всеми возможностями инженерии, потому придумали и внедрили активный стабилизатор поперечной устойчивости, который состоит из двух частей – одна часть подсоединена к подвеске правого колеса, вторая - к подвеске левого колеса, а посредине два конца стержня стабилизатора зажимаются в гидравлическом или электромеханическом модуле, который имеет возможность скручивать ту или иную часть, повышая тем самым стабильность автомобиля, а когда автомобиль движется прямо, «распускает» эти два конца стержня, давая тем самым возможность каждому из колес вырабатывать отведенный им ход подвески.

Геометрическая проходимость автомобиля

Под геометрической проходимостью автомобиля понимают совокупность его параметров, влияющих на способность беспрепятственно передвигаться в тех или иных условиях. К таким параметрам относят высоту дорожного просвета автомобиля, углы съезда и въезда, угол рампы, величину свесов. Дорожный просвет или клиренс автомобиля - это высота от самой низкой точки кузова, узла (например, деталей подвески) или агрегата (к примеру, картера двигателя) машины до поверхности земли. Угол съезда и въезда - это параметры, определяющие возможность автомобиля взбираться на горку под определенным углом или съезжать с нее. Величина этих углов напрямую связана с другим параметром, входящим в понятие геометрической проходимости - длины переднего и заднего свесов. Как правило, если свесы короткие, то машина может иметь большие углы въезда и съезда, что помогает ей без труда взбираться на крутые горки и съезжать с них. В свою очередь, знать длину свесов важно, чтобы понимать, можно ли припарковать свое авто к тому или иному бордюру. Наконец, еще один параметр - угол рампы, зависящий от длины колесной базы и высоты кузова автомобиля над поверхностью. Если база длинна, а высота мала, то автомобиль не сможет преодолеть точку перехода из вертикальной плоскости в горизонтальную - проще говоря, машина, поднявшись на гору, не сможет перевалить через ее пик, и «сядет» на днище.


Please enable JavaScript to view the

Статья об автомобильной подвеске - история, типы подвесок, классификация и назначение, особенности функционирования. В конце статьи - интересное видео по теме и фото.


Содержание статьи:

Автомобильная подвеска выполнена в виде конструкции из отдельных элементов, которые в своей совокупности связывают основание кузова и мосты автомашины. Причем, это соединение должно быть упругим, чтобы была амортизация в процессе следования машины.

Назначение подвески


Подвеска служит для погашения колебаний в определенной степени и для смягчения ударов и прочих кинетических воздействий, негативно влияющих на содержимое автомобиля, грузы, а также на конструкцию самой машины, особенно при передвижении по некачественной дорожной поверхности.

Другая роль подвески – осуществление регулярного соприкосновения колес с дорожным покрытием, а также передача на дорожную поверхность силы тяги двигателя и силы торможения, чтобы колеса при этом не нарушали нужного положения.

В исправном состоянии подвеска работает правильно, в результате чего водителю управлять машиной безопасно и комфортно. Несмотря на внешнюю простоту конструкции, подвеска принадлежит к одним из самых важных устройств в современной машине. Ее история уходит корнями в далекое прошлое, и с момента ее изобретения подвеска прошла через многие инженерные решения.

Немного истории о подвеске автомобиля


Еще до автомобильной эпохи были попытки смягчить передвижение карет, у которых изначально оси колес неподвижно прикреплялись к основанию. При такой конструкции малейшая неровность дороги мгновенно передавалась корпусу кареты, что тут же ощущали сидящие внутри пассажиры. Первое время эта проблема решалась при помощи мягких подушек, которые устанавливались на сидения. Но эта мера была малоэффективна.

Впервые для карет были применены так называемые эллиптические рессоры, которые представляли собой гибкое соединение между колесами и днищем кареты. Намного позднее этот принцип использовали и для автомобилей. Но при этом сама рессора изменилась - из эллиптической она превратилась в полуэллиптическую, и это позволяло устанавливать ее поперечно.

Однако машина с такой примитивной подвеской управлялась с трудом даже на самых низких скоростях. По этой причине впоследствии подвески стали монтировать в продольном положении на каждое колесо в отдельности.

Дальнейшее развитие автомобильной промышленности позволило эволюционировать и подвеске. На сегодняшний день эти устройства имеют десятки разновидностей.

Функции подвески и технические данные


Каждая разновидность подвесок обладает индивидуальными признаками, охватывающими комплекс рабочих свойств, от которых непосредственно зависит управляемость машины, а также безопасность и удобство находящихся в ней людей.

Однако несмотря на то, что все типы подвесок автомобиля разные, они выпускаются для одних и тех же целей:

  • Погашение вибрации и ударов со стороны неровного дорожного покрытия в целях минимализации нагрузок на корпус кузова, а также для улучшения комфорта водителя и пассажиров.
  • Стабилизация положения машины в процессе следования путем регулярного соприкосновения резины с дорогой, а также уменьшение возможных кренов корпуса кузова.
  • Сохранения необходимой геометрии положения и перемещения всех колес для обеспечения точности маневрирования.

Разновидности подвесок по упругости


В отношении упругости подвески можно разделить на три категории:
  • жесткая;
  • мягкая;
  • винтовая.
Жесткая подвеска, как правило, используется на спортивных автомобилях, потому что она больше всего годится именно для быстрой езды, где необходимо оперативное и четкое реагирование на водительское маневрирование. Эта подвеска придает машине максимальную устойчивость и минимальный дорожный просвет. Кроме того, благодаря именно ей усиливается сопротивление крену и кузовному раскачиванию.

Мягкая подвеска устанавливается в основной массе легковых машин. Ее достоинство в том, что она достаточно качественно сглаживает дорожные неровности, но с другой стороны машина с такой конструкцией подвесок более склонна к заваливаниям, и при этом хуже управляется.

Винтовая подвеска нужна в тех случаях, когда возникает необходимость в изменяемой жесткости. Она сделана в виде стоек-амортизаторов, на которых сила тяги пружинного механизма регулируется.

Ход подвески


Ходом подвески принято считать промежуток от нижнего положения колеса в свободном состоянии до верхнего критического положения при максимальном сжатии подвески. От этого параметра во многом зависит так называемая «внедорожность» машины.

То есть, чем больше ход, тем большую по размеру неровность способна пройти машина без ударов по ограничителю, а также без провиса ведущего моста.


Каждая подвеска содержит следующие компоненты:
  1. Упругое устройство. Берет на себя нагрузки, предоставляемые дорожными препятствиями. Может состоять из пружины, пневмоэлементов и проч.
  2. Демпфирующее устройство. Необходимо для погашения вибрации кузова в процессе преодолении дорожных неровностей. В качестве этого устройства применяются все разновидности амортизационных приспособлений.
  3. Направляющее устройство. Контролирует необходимое смещение колеса относительно корпуса кузова. Выполняется в виде поперечных тяг, рычагов и рессор.
  4. Стабилизатор поперечной устойчивости. Гасит наклоны кузова в поперечном направлении.
  5. Резино-металлические шарниры. Служат для упругого соединения частей механизма с машиной. Дополнительно они в небольшой степени выполняют роль амортизаторов – частично гасят толчки и колебания.
  6. Ограничители хода подвески. Фиксируют ход устройства в критической нижней и в критической верхней точках.

Классификация подвесок

Подвески можно разделить на две категории – зависимые и независимые. Такое подразделение продиктовано кинематикой направляющего устройства подвески.


При такой конструкции колеса автомобиля жестко связываются за счет балки или монолитного моста. Вертикальное расположение парных колес всегда одинаковое и изменению не подлежит. Устройство задней и передней зависимых подвесок аналогичное.

Разновидности: пружинная, рессорная, пневматическая. Монтаж пружинной и пневматической подвесок требует использования специальных тяг, чтобы зафиксировать мосты от возможного смещения во время монтажа.

Преимущества зависимой подвески:

  • большая грузоподъемность;
  • простота и надежность в применении.
Недостатки:
  • затрудняет управление;
  • слабая устойчивость на высокой скорости;
  • недостаточный комфорт.


При установленной независимой подвески колеса машины способны менять вертикальное положение независимо друг от друга, продолжая при этом находиться в той же плоскости.

Преимущества независимой подвески автомобиля:

  • высокая степень управляемости;
  • надежная устойчивость машины;
  • повышенный комфорт.
Недостатки:
  • устройство довольно сложное и, соответственно, затратное в экономическом отношении;
  • пониженная долговечность в эксплуатации.

Примечание: существует еще полузависимая подвеска или так называемая торсионная балка. Такое устройство - нечто среднее между независимой и зависимой подвесками. Колеса продолжают быть жестко соединенными между собой, но, тем не менее, способность небольшого смещения отдельно друг от друга у них все-таки есть. Такую возможность предоставляют упругие качества мостовидной балки, которая соединяет колеса. Данная конструкция зачастую используется для задних подвесок недорогих автомобилей.

Виды независимых подвесок

Подвеска МакФерсон (McPherson)


На фото подвеска McPherson


Данное устройство характерно для передней оси современных автомобилей. Шаровая опора соединяет ступицу с нижним рычагом. Иногда форма этого рычага позволяет использовать продольную реактивную тягу. Оснащенная пружинным механизмом амортизационная стойка закрепляется к ступичному блоку, а ее верхняя часть фиксируется в основании кузовного корпуса.

Поперечная тяга, которая соединяет оба рычага, крепится на днище машины и служит своеобразным противодействием наклону автомобиля. Колеса свободно поворачивают благодаря подшипнику стойки-амортизатора и шаровому креплению.


Конструкция задней подвески сделана таким же образом. Разница лишь в том, что задние колеса не могут поворачиваться. Вместо нижнего рычага установлены поперечные и продольные тяги, которые закрепляют ступицу.

Преимущества подвески МакФерсон:

  • несложность изделия;
  • занимает небольшое пространство;
  • долговечность;
  • доступная цена как в приобретении, так и в ремонте.
Недостатки подвески McPherson:
  • легкость управления на среднем уровне.

Двухрычажная передняя подвеска

Эта разработка считается довольно результативной, но и весьма непростой по устройству. Для верхнего крепления ступицы служит второй поперечный рычаг. Для упругости подвески может применяться либо пружина, либо торсион. Задняя подвеска устроена точно так же. Такая сборка подвески придает машине максимальное удобство в управлении.


В этих устройствах упругость обеспечивают не пружины, а пневматические баллоны, наполненные сжатым воздухом. С подобной подвеской можно менять высоту кузова. Кроме того, с такой конструкцией ход автомобиля становится более плавным. Как правило, устанавливается на машинах класса люкс.

Гидравлическая подвеска

В данной конструкции амортизаторы соединены с мололитным замкнутым контуром, заполненным маслом для гидравлики. С такой подвеской можно регулировать степень упругости и дорожный просвет. А если в машине имеется электроника, предусматривающая функции адаптивной подвески, то она может сама адаптироваться в самых разных дорожных условиях.

Спортивные независимые подвески

Их еще называют койловерами или винтовыми подвесками. Выполнены в виде амортизационных стоек, у которых можно настраивать степень жесткости непосредственно на машине. Нижняя часть пружины имеет резьбовое соединение, и это позволяет менять ее вертикальное положение, а также настраивать размер дорожного просвета.

Подвески push-rod и pull-rod


Такая конструкция была разработана специально для гоночных автокаров, у которых открытые колеса. Базируется на двухрычажной схеме. Основное отличие от других разновидностей проявляется в том, что демпфирующие механизмы установлены в кузове. Устройство этих двух типов идентично, р азница лишь в размещении тех частей, которые подвергаются наибольшему напряжению.

Спортивная подвеска push-rod. Несущий нагрузку компонент, называемый толкателем, функционирует на сжатие.

Спортивная подвеска pull-rod. Та же часть, которая испытывает наибольшее напряжение, работает на растяжение. Такое решение делает центр тяжести более низким, за счет чего машина становится более устойчивой.

Однако несмотря на перечисленные небольшие различия, эффективность этих двух разновидностей подвесок находится примерно на одном уровне.

Видео о подвеске автомобиля:

Автомобильная подвеска — это устройство, которое обеспечивает упругое сцепление колес автомобиля с несущей системой, а также регулирует положение кузова во время движения и уменьшает нагрузки на колеса. Современное автомобилестроение предлагает различные типы автомобильных подвесок: пневматические, пружинные, рессорные, торсионные и т.д.

Направляющие устройства подвески.Совокупность устройств, связывающих колеса и кузов автомобиля, образует подвеску. Основное назначение подвески состоит в преобразовании воздействия на автомобиль со стороны дороги в допустимые колебания кузова и колес. Эти взаимодействия должны быть такими, чтобы автомобиль не только быстро набирал скорость (разгонялся), но и мог еще быстрее замедлять ход (вплоть до полной остановки). Кроме того, машина во время движения должна легко управляться и быть устойчивой. Для выполнения названных задач и служит подвеска, конструкция которой определяет основные эксплуатационные свойства легковых автомобилей, включая безопасность движения.

При движении автомобиля колеса перемещаются относительно кузова и дороги в вертикальном и горизонтальном направлениях, а также под углом (вращение вокруг оси, наклон относительно кузова и дороги, вращение вокруг оси поворота — оси шкворня). Для выполнения требований, связанных с эксплуатационными свойствами автомобиля, приходится существенно ограничивать перемещение колес. При поперечном (боковом) перемещении колес в горизонтальных направлениях изменяется колея, а при продольном — база автомобиля. Наличие таких перемещений приводит к увеличению сопротивления движению, износу шин, ухудшению устойчивости и управляемости. Вертикальные перемещения колес относительно кузова у легковых автомобилей могут превышать 20 см. Углы поворота колес составляют 30... 45°.

Для того чтобы автомобиль успешно разгонялся и тормозил, хорошо «держал» дорогу, необходимо иметь надежное сцепление колес с ее поверхностью. Влияет ли подвеска на сцепление? Безусловно. Сцепление зависит не только от характеристик протектора шин и качества дороги, но и от нагрузки, которая передается на колеса. Изменение вертикальной нагрузки на колеса определяется прогибом рессор и усилиями со стороны амортизаторов. При уменьшении вертикальной нагрузки снижается сцепление колес с поверхностью дороги.

Подвеска легкового автомобиля содержит следующие основные устройства: направляющие устройства (рычаги, стойки, тяги, растяжки), упругие элементы (листовые рессоры, пружины, пневморессоры и т. п.), гасящие устройства (гидравлические амортизаторы) и, наконец, устройства регулирования и управления (регуляторы высоты и крена, ЭВМ и т. д.).

Направляющие устройства подвески влияют на характер движения кузова и колес автомобиля при колебаниях. Будет ли, например, подъем колеса сопровождаться его наклоном, боковым или продольным перемещением зависит от того, по какой схеме выполнены направляющие устройства. Направляющие устройства служат для передачи тяговых и тормозных сил, а также боковых сил, возникающих при повороте, движении по косогору от колес к кузову.

По типу направляющих устройств все подвески делятся на зависимые и независимые. При зависимой подвеске правое и левое колеса связаны жесткой балкой — мостом. Поэтому при наезде на неровность одного из колес оба колеса наклоняются в поперечной плоскости на одинаковый угол. В независимой подвеске перемещения одного колеса жестко не связаны с перемещениями другого. Наклоны и перемещения правого и левого колес существенно отличаются.

Упругие устройства (упругие элементы) служат для уменьшения нагрузок, действующих между колесом и кузовом. При наезде на дорожные неровности происходят деформации упругих элементов. После проезда неровностей упругие элементы вызывают колебания кузова и колес. Основной характеристикой упругих элементов является жесткость, т.е. отношение вертикальной нагрузки к прогибу (или осадке пружины). Упругие элементы подвески колес различают не только по конструкции, но и в зависимости от того, из какого материала они сделаны. Если используются упругие свойства металла (сопротивление изгибу или кручению), то имеют место металлические упругие элементы. Учитывая упругие свойства резины и пластмасс, широко применяют резиновые и пластмассовые рессоры. В последнее время значительное распространение получили пневморессоры, где используются упругие свойства воздуха или газов.

Гасящие устройства подвески (гидравлические амортизаторы) предназначены для гашения колебаний кузова и колес. Во время работы подвески происходит перераспределение энергии колебаний автомобиля между кузовом и колесами. Амортизаторы поглощают эту энергию, превращая ее в тепло. Чем больше энергии поглощает амортизатор, тем быстрее будут затухать колебания кузова и колес, меньше будет раскачиваться кузов. Ездить на мягких рессорах без амортизаторов практически невозможно.

Существенно уменьшить наклон и поперечное перемещение колес можно, используя схему двухрычажной подвески. С помощью короткого верхнего и длинного нижнего рычагов удается снизить угловые и поперечные перемещения колес. Влияние наклона (угла) можно уменьшить с помощью развала (наклона) колес в вертикальной плоскости и схода (разница между боковыми поверхностями шины впереди и сзади) колес. Поперечные перемещения колес можно компенсировать податливостью шин.

Двухрычажная подвеска обладает рядом преимуществ в расположении основных элементов: амортизатор закреплен внутри пружины; пружина и амортизатор опираются на нижний рычаг, что снижает габариты по высоте; поперечные рычаги надежно передают толкающие и тормозные силы от колеса к кузову. Двухрычажные направляющие устройства получили широкое распространение в передних независимых подвесках легковых автомобилей.

Еще меньше угловые и поперечные перемещения у направляющих устройств в телескопических пружинных стойках переднеприводных автомобилей, где вместо двух рычагов в поперечной плоскостиустановлен один нижний поперечный рычаг с растяжками. Такая подвеска получила название качающаяся свеча, или, как ее называют по имени изобретателя, подвеска Макферсона. При наличии только нижнего рычага и верхней опоры подвеска имеет незначительные изменения колеи и наклона колес, что уменьшает износ шин и повышает устойчивость автомобиля. К недостаткам схемы следует отнести высокое расположение верхней опоры, которую надо размещать в передней части кузова, а также большие нагрузки, возникающие в местах крепления верхней опоры к кузову.

Использование продольных рычагов в направляющих устройствах позволяет избежать изменения наклона колес при вертикальных перемещениях. Однако длинные продольные рычаги испытывают значительные нагрузки под действием боковых сил (при повороте, съезде на обочину, воздействиях от неровностей дороги). При такой конструкции направляющего устройства в независимых подвесках трудно осуществить привод к колесу с помощью карданных передач; чтобы уменьшить боковой крен кузова, приходится устанавливать дополнительный упругий элемент — стабилизатор поперечной устойчивости. Направляющие устройства с продольными рычагами используют на задних подвесках переднеприводных автомобилей.

Упругие элементы подвески.Рассмотрим конструкции упругих элементов (рессор) подвески колес. Самым старым упругим элементом является листовая рессора. Обычная листовая рессора представляет собой пакет (в виде трапеции) стянутых плоских стальных полос. Самый длинный коренной лист на концах имеет проушины, с помощью которых рессора крепится к кузову. Наиболее часто продольные листовые рессоры устанавливают на задних подвесках легковых автомобилей. Чем больше листов в пакете, тем большую нагрузку может воспринять рессора. Увеличение длины рессоры дает возможность увеличить прогиб и, следовательно, ход колес, т.е. сделать подвеску длинноходной и мягкой. Основная особенность листовых рессор состоит в том, что они могут выполнять роль не только упругого элемента, но и направляющего устройства. Через листовую рессору передаются все нагрузки, возникающие при качении колес. Рессоры передают толкающие усилия при разгоне и торможении. Во время движения по косогору, при повороте автомобиля, а также под действием других боковых сил рессоры подвергаются кручению. Наибольшие нагрузки приходятся на коренные листы рессоры. Долговечность листовых рессор при больших нагрузках существенно снижается. Другой особенностью листовых рессор является наличие трения между листами. Силы трения препятствуют прогибу рессоры и ухудшают ее упругие свойства. Происходит блокирование упругого элемента, и нагрузка от колес передается непосредственно на кузов. В результате существенно ухудшается плавность хода. Эти недостатки листовых рессор заметно проявляются при движении автомобиля по неровностям дороги, имеющим небольшую высоту. Тогда при увеличении скорости возникают интенсивные вибрации и шум в салоне автомобиля. Чтобы избавиться от вредного влияния трения, между листами устанавливают неметаллические прокладки.

Кроме указанных недостатков, многолистовым рессорам присущи и другие. В подвеске с такими рессорами устанавливают дополнительные упругие элементы — упоры (буферы) для ограничения пробоя и увеличения жесткости; рессоры имеют большую массу, малый срок службы, их трудно расположить в системах независимой подвески легкового автомобиля.

Совершенствование конструкции листовых рессор привело к созданию так называемых малолистовых рессор. Листы такой рессоры представляют собой полосы переменного сечения по длине. Изготовление малолистовых рессор связано с рядом технологических трудностей, однако малолистовые рессоры той же грузоподъемности, что и обычные многолистовые, имеют значительно меньшую массу (на 20... 30%). У них существенно меньше межлистовое трение. В последние годы с целью снижения массы предприняты попытки изготовить малолистовые рессоры из композитных материалов.

Более совершенными по сравнению с листовыми рессорами оказались металлические упругие элементы, выполненные в виде витых пружин и стальных стержней (торсионов). При одинаковой грузоподъемности с листовыми рессорами пружины и торсионы имеют существенно меньшую массу и более долговечны.

С появлением передней независимой подвески пружины получили самое широкое распространение. Наиболее простые витые пружины с постоянной толщиной проволоки и неизменным шагом навивки. Такие пружины обеспечивают подвеске необходимый ход колес и малую жесткость.

Однако мягкие пружины не позволяют обеспечить подвеске защиту от ударов и толчков в конце хода колес вверх (сжатие) и вниз (отбой). Как правило, необходимо ужесточение подвески с пружиной в конце хода сжатия и отбоя, которое достигается за счет установки дополнительных упругих элементов.

В качестве дополнительных упругих элементов чаще всего применяют резиновые или пластмассовые буфера.

Для улучшения характеристики рессоры используют фасонные пружины с разным шагом навивки и толщиной проволоки (конические, бочкообразные и др). Однако изготовление таких пружин в условиях массового производства легковых автомобилей существенно сложнее

Дорога для движения транспортных средств редко бывает идеальной. Даже на трассе с твердым покрытием всегда присутствуют трещины, выбоины и неровности. Без системы амортизации комфортное движение было бы невозможным, а кузов автомобилей долго не выдержал бы ударных нагрузок, передающихся с колес. Подвеска автомобиля создана для гашения такой нагрузки, и, в зависимости от назначения и стоимости, имеет разную конструкцию.

Назначение и устройство подвески автомобиля

При движении транспортного средства все колебания, возникшие от неровностей дороги, передаются на кузов. Задача подвески – смягчать или гасить подобные колебания. Дополнительной функцией является обеспечение соединения кузова и колес, при этом колеса имеют возможность менять расположение независимо от кузова, регулируя направление движения. Вместе с колесами, подвеска входит в число обязательных элементов ходовой части машины.

Подвеска – это технически сложное устройство, состоящее из следующих частей:

  1. Упругих элементов – металлических и неметаллических деталей, принимающих на себя всю нагрузку от движения по неровностям, и, в силу своих свойств, распределяющих ее на конструкцию кузова.
  2. Гасящих устройств (амортизаторов) – агрегатов с пневматическим, гидравлическим или комбинированным строением, нивелирующих колебания кузова, полученных от упругих частей.
  3. Направляющих деталей – различных рычагов, соединяющих подвеску с кузовом, и контролирующих смещение колес относительно друг друга и кузова.
  4. Стабилизаторов поперечной устойчивости – упругих штанг из металла, связывающих подвеску и кузов, и устраняющих возможный крен машины при движении.
  5. Колесных опор – деталей передней оси в виде поворотных кулаков, принимающих нагрузки от колес, и распределяющих их по подвеске.
  6. Средств крепления деталей, агрегатов и узлов, задача которых – соединять подвеску и кузов между собой. Это жесткие соединения на болтах, шаровые опоры или шарниры, композитные сайлентблоки.

Демпфирующие элементы

Части подвески, гасящие колебания во время движения автомобиля называют демпфирующими элементами. К ним относятся следующие устройства:

  1. Двухтрубные амортизаторы, состоящие из внутренней и внешней труб, и выполняющие функцию резервуара и поршня, которые сообщаются отверстиями и разнонаправленными клапанами, которые из-за инерционности рабочей среды тормозят возвратно-поступательные движения и гасят колебания.

В зависимости от внутренней рабочей среды, амортизаторы делятся на:

  • Гидравлические;
  • Газонаполненные;
  • Газо-гидравлические.

Упругие элементы

Задача данных элементов подвески – гасить удары, поступающие с колес автомобиля на кузов, и представляют собой следующие детали:

  1. Пружина. Самый простой элемент, присутствующий почти во всех видах подвески. Для эффективности работы может иметь различную форму.
  2. Рессора. Самый древний элемент подвески, представляет собой набор стальных листов, соединенных вместе, и гасящих колебания за счет взаимного трения.
  3. Пневматический элемент. Выполняет роль альтернативы пружине и представляет собой подушку из резины, куда закачивается воздух.
  4. Торсион. Упругий компактный элемент в виде стержня, один конец которого соединен с рычагом подвески, а другой зажат кронштейном на кузове. При перемещении рычага подвески стержень выполняет роль упругого элемента и скручивается.
  5. Подрамник. Представляет собой промежуточную деталь между кузовом и элементами подвески, образуя с ними одну сборочную единицу.
  6. Стабилизатор поперечной устойчивости. Представляет собой стержень, связанный через стойки или рычаги подвесок колес для стабилизации движения автомобиля.

Принцип работы подвески

Автомобильная подвеска работает, преобразовывая силу удара от наезда колеса на неровное покрытие, в движение упругих частей (пружин). Жесткость таких перемещений контролируется и смягчается гасящими устройствами (амортизаторами). Благодаря этому сила ударов, передающихся на кузов, снижается, что обеспечивает плавность движения.

Жесткость подвески у разных автомобилей сильно различается: чем она жестче – тем легче и более предсказуемо управление, но уменьшается комфорт езды. Мягкая создает удобство эксплуатации, но за счет заметно сниженной управляемости (чего не рекомендуется допускать). По этой причине производители транспортных средств всегда стараются найти компромисс между комфортом и безопасностью.

Классификация подвесок

В современном автомобилестроении наиболее часто применяются следующие виды подвесок:

1. МакФерсон. Разработана в 1960 г. инженером, давшим конструкции свою фамилию. Состоит из следующих частей:

  • Стабилизатора поперечной устойчивости, или «качающейся свечи». Крепится к кузову шарниром и имеет свойство качаться при вертикальном движении колеса.
  • Блока (пружинного элемента и амортизатора телескопического типа);
  • Рычага.

Преимущество подвески в невысокой цене, простоте и надежности. Недостатком выступает заметное изменение угла развала на колесах.

2. Двурычажная. Состоит из двух рычагов разной длины – верхнего короткого и нижнего длинного. Данная схема является одной из самых совершенных, так как автомобиль на ней имеет отличную поперечную устойчивость и низкий износ шин в виду минимальных поперечных перемещений колес.

3. Многорычажная. Имеет сходное строение с двурычажной, но намного совершеннее и сложнее. В ней все шарниры, рычаги и сайлент-блоки крепятся к специальному подрамнику. Множество шаровых опор и прорезиненных втулок прекрасно гасят удары при наезде на неровность, и уменьшают шумность в салоне. Данная схема подвески обеспечивает наилучшее сцепление шины с поверхностью, плавность хода и управляемость. Достоинства многорычажной подвески следующие:

  • Оптимальная поворачиваемость колеса;
  • Изолированные продольные и поперечные регулировки;
  • Небольшие неподрессоренные массы;
  • Независимость колес друг от друга;
  • Отличный потенциал при полном приводе.

Но главным недостаток подвески – ее большая стоимость, хотя в последнее время таким агрегатом оснащают не только представительские машины, но и авто гольф-класса.

4. Адаптивная. Несет в себе принципиальные отличия от других типов механизмов, являясь логическим и усовершенствованным продолжением гидропневматической подвески, впервые реализованной фирмами Ситроен и Мерседес. Ее достоинства следующие:

  • Малая раскачка на высокой скорости и минимальный крен кузова;
  • Принудительно меняющееся демпфирование;
  • Автоматическая адаптация к любому дорожному покрытию;
  • Отличная устойчивость при прямом движении;
  • Адаптация под водителя;
  • Высокая степень безопасности.

Разные фирмы при изготовлении агрегата разрабатывают свою оригинальную схему, но в общем конструкция состоит из следующих компонентов:

  • Регулируемых стабилизаторов поперечной устойчивости;
  • Блока управления ходовой;
  • Активными амортизаторными стойками;
  • Различными датчиками (дорожного просвети, неровностей и т.д.).

Главный минус устройства состоит в его сложности.

5. Типа «Де Дион». Изобретение французского инженера имеет главную цель – максимально разгрузить задний мост транспортного средства отделением корпуса главной передачи, при этом он крепится непосредственно к кузову. Крутящий момент передается через полуоси и ШРУСы, что позволяет подвеске быть как зависимой, так независимой. Главные недостатки конструкции – «приседание» на задние колеса при резком старте и «клевки» при торможеии.

6. Задняя зависимая. Устройство можно наблюдать на классических моделях ВАЗа, где отличительной чертой в роли упругих элементов выступают цилиндрические винтовые пружины. На них «висит» балка заднего моста и крепится к кузову четырьмя продольными рычагами. Поперечная реактивная тяга гасит крены и улучшает управляемость. Конструкция не обеспечивает хорошего комфорта и плавности хода из-за неподрессоренных масс, и массивного заднего моста, но актуальна при креплении к балке картера главной передачи, редуктора и других массивных частей.

7. Полузависимая задняя. Широко применяется во многих полноприводных автомобилях, и состоит их пары продольных рычагов, крепящихся в центре к поперечине. Такая подвеска имеет следующие преимущества:

  • Компактные размеры и относительно небольшой вес;
  • Простота ремонта и обслуживания;
  • Заметное снижение неподрессоренных масс;
  • Самая лучшая кинематика колес.

Главный минус подвески – невозможность ее установки на заднеприводных машинах.

8. Пикапов и внедорожников. В зависимости от назначения и веса автомобиля, различают три вида подвески:

  • Независимая передняя и зависимая задняя;
  • Полностью независимая;
  • Полностью зависимая.

В большинстве случаев на задней оси ставится рессорная или пружинная подвеска, взаимодействующая с жесткими неразъемными мостами. Рессоры применяют у тяжелых джипов и пикапов из-за способности выдержать внушительную нагрузку, неприхотливости и надежности. Такая подвеска недорога по стоимости, что повлияло на оснащение ею отдельных бюджетных автомобилей.

Пружинная схема – длинноходная, мягкая, и по строению не сложная, потому устанавливается чаще на легких джипах. На передних осях устанавливают пружинные и торсионные схемы.

9. Грузовиков. На грузовики устанавливают зависимые подвески с продольными и поперечными рессорами, и гидравлическими амортизаторами. Такая схема максимально проста и дешева в производстве. Но на высоких скоростях водитель сталкивается с плохой управляемостью, так как рессоры плохо выполняют функцию направляющих элементов.