Как выглядит поршень. Поршень двигателя внутреннего сгорания: устройство, назначение, принцип работы

Определение.

Поршневой двигатель – один из вариантов двигателя внутреннего сгорания, работающий за счет превращения внутренней энергии сгорающего топлива в механическую работу поступательного движения поршня. Поршень приходит в движение при расширении рабочего тела в цилиндре.

Кривошипно-шатунный механизм преобразует поступательное движение поршня во вращательное движение коленчатого вала.

Рабочий цикл двигателя состоит из последовательности тактов односторонних поступательных ходов поршня. Подразделяют двигатели с двумя и четырьмя тактами работы.

Принцип работы двухтактного и четырехтактного поршневых двигателей.


Количество цилиндров в поршневых двигателях может варьироваться в зависимости от конструкции (от 1-го до 24-х). Объем двигателя принято считать равным сумме объемов всех цилиндров, вместимость которых находят по произведению поперечного сечения на ход поршня.

В поршневых двигателях различных конструкций по-разному происходит процесс воспламенения топлива:

Электроискровым разрядом , который образуется на свечах зажигания. Такие двигатели могут работать как на бензине, так и на других видах топлива (природный газ).

Сжатием рабочего тела:

В дизельных двигателях , работающих на дизельном топливе или газе (с 5% добавлением дизтоплива), сжимается воздух, и при достижении поршнем точки максимального сжатия, происходит впрыск топлива, которое воспламеняется от контакта с нагретым воздухом.

Двигатели компрессионной модели . Подача топлива в них точно такая же, как и в бензиновых двигателях. Поэтому, для их работы, необходимы особенный состав топлива (с примесями воздуха и диэтилового эфира), а также точная регулировка степени сжатия. Компрессорные двигатели нашли свое распространение в авиастроении и автомобилестроении.

Калильные двигатели . Принцип их действия во многом схож с двигателями компрессионной модели, однако не обошлось без конструкционной особенности. Роль зажигания в них выполняет – калильная свеча, накал которой поддерживается энергией сгорающего на предыдущем такте топлива. Состав топлива также особенный, за основу берут метанол, нитрометан и касторовое масло. Применяются такие двигатели, как на автомобилях, так и на самолетах.

Калоризаторные двигатели . В этих двигателях воспламенение происходит при контакте топлива с горячими частями двигателя (обычно – днище поршня). В качестве топлива применяется мартеновский газ. Используются они в качестве приводных двигателей на прокатных станах.

Виды топлива, применяющиеся в поршневых двигателях :

Жидкое топливо – дизтопливо, бензин, спирты, биодизель;

Газы – природные и биологические газы, сжиженные газы, водород, газообразные продукты крекинга нефти;

Вырабатываемый в газогенераторе из угля, торфа и древесины, монооксид углерода также используется в качестве топлива.

Работа поршневых двигателей.

Циклы работы двигателей подробно расписаны в технической термодинамике. Различные циклограммы описываются различными термодинамическими циклами: Отто, Дизеля, Аткинсона или Миллера и Тринклера.

Причины поломок поршневых двигателей.

КПД поршневого ДВС.

Максимальный КПД который удалось получить на поршневом двигателе составляет 60%, т.е. чуть меньше половины сгорающего топлива расходуется на нагрев деталей двигателя, а также выходит с теплом выхлопных газов. В связи с чем, приходится оснащать двигатели системами охлаждения.

Классификация систем охлаждения:

Воздушные СО – отдают тепло воздуху за счет ребристой внешней поверхности цилиндров. Применяются ли
бо на слабых двигателях (десятки л.с.), либо на мощных авиационных двигателях, которые охлаждаются быстрым потоком воздуха.

Жидкостные СО – в качестве охладителя используется жидкость (вода, антифриз или масло), которая прокачивается через рубашку охлаждения (каналы в стенках блока цилиндров) и поступает в радиатор охлаждения, в котором она охлаждается воздушными потоками, естественными или от вентиляторов. Редко, но в качестве теплоносителя также используется металлический натрий, который расплавляется от тепла прогревающегося двигателя.

Применение.

Поршневые двигатели, благодаря своему мощностному диапазону, (1 ватт – 75 000 кВт) обрели большую популярность не только в автомобилестроении, но и авиастроении и судостроении. Они также используются для привода боевой, сельскохозяйственной и строительной техники, электрогенераторов, водяных насосов, бензопил и прочих машин, как мобильных так и стационарных.

Рис. Поршень дизельного двигателя (а) грузового автомобиля и формы поршней разных двигателей (б) : 1 - канавка нижнего маслосъемного кольца;
2 - проточка под стопорное кольцо поршневого пальца;
3 - внутренняя поверхность бобышки;
4 - отверстие для смазки поршневого пальца;
5 - канавка верхнего маслосъемного кольца;
6 - канавки компрессионных колец;
7 - головка поршня;
8 - камера сгорания в поршне;
9 - днище поршня;
10 - отверстия для отвода масла;
11 - юбка

Поршень имеет довольно сложную конструкцию, потому что он подвергается очень большим и непостоянным по величине нагрузкам.
Наружная поверхность направляющей части носит название юбки . Во время рабочего хода на поршень воздействует высокое давление расширяющихся при высокой температуре газов. С другой стороны, при работе двигателя, особенно на высоких оборотах, поршень подвергается большим знакопеременным инерционным нагрузкам. При нахождении поршня в ВМТ и НМТ его ускорение равно нулю, а затем поршень резко ускоряется и движется с большой скоростью, причем направление движения меняется сотни раз в секунду. Для уменьшения инерционных нагрузок необходимо максимально уменьшать массу поршня. В то же время он должен иметь высокую прочность, чтобы противостоять высокому давлению и нагреву при соприкосновении с горячими газами с последующим охлаждением при подаче в цилиндр холодного свежего заряда. В настоящее время поршни бензиновых и дизельных автомобильных двигателей изготавливают из алюминиевых сплавов. При производстве поршня в отливку в процессе изготовления часто закладывают стальные вставки, которые повышают его жесткость и препятствуют температурному расширению. Иногда стальную вставку располагают в канавке под верхнее компрессионное (наиболее нагруженное) поршневое кольцо .
При нагревании поршень расширяется. Для компенсации температурного расширения поршня при нагревании ему придают специальную форму. Юбка поршня в поперечной плоскости имеет форму овала, а не окружности. В продольной плоскости юбка поршня выглядит как усеченный конус. Части поршня с большой температурой или с большим объемом металла расширяются сильнее (например, часть юбки, где расположены бобышки), и при достижении рабочей температуры в двигателе поршень принимает форму цилиндра.
За время своего существования поршни претерпели значительные изменения конструкции. Если сравнить поршень двигателя современного автомобиля с его предшественником, можно заметить, что поршни стали значительно короче. Большая часть юбки обрезается с каждой стороны, и остаются только две небольшие секции для того, чтобы предотвратить перекос поршня в цилиндре. Благодаря совершенству конструкции силы, воздействующие на поршень, сбалансированы таким образом, чтобы свести к минимуму тенденцию к повороту. Расстояние от днища поршня до верхней канавки под поршневое кольцо уменьшают с целью снижения возможности образования нагара в этой части. За счет уменьшения размеров сечений в конструкции поршня удалось значительно снизить его массу. Для уменьшения потерь на трение и повышения долговечности деталей КШМ на боковую поверхность поршня наносят слой антифрикционного материала, содержащего дисульфид молибдена или графит.
Днище поршня может быть плоским, выпуклым, вогнутым, иметь канавки, для того чтобы при полном открытии клапанов они не касались поршня. У дизельного двигателя камера сгорания может быть выполнена в поршне.
Поршни двигателей с непосредственным впрыском топлива имеют особую форму, необходимую для обеспечения процесса сгорания топлива.
Поршневые кольца изготавливаются из специально модифицированного чугуна. В двигателях современных автомобилей используют несколько типов колец. Верхние компрессионные кольца служат для того, чтобы предотвратить прорыв газов в картер двигателя, а нижнее маслосъемное - контролирует количество масла на стенках цилиндра (стенки смазываются маслом, поступающим из картера в виде масляного тумана). Масло необходимо для предотвращения износа ЦПГ , но его излишки нежелательны. Поэтому следует подавать его больше, чем нужно, а излишки удалять с помощью маслосъемного кольца, работающего как скребок. Один из способов получения более компактных и легких поршней - выполнение колец более узкими и мелкими с компактным размещением их в верхней части головки поршня. При этом предъявляются повышенные требования к материалу, из которого они изготовлены, и к точности их изготовления.

В кривошипно-шатунном механизме поршень выполняет несколько функций, среди которых восприятие давления газов и передача усилий на шатун, герметизация камеры сгорания и отвод от нее тепла. Поршень является наиболее характерной деталью двигателя внутреннего сгорания , т.к. именно с его помощью реализуется термодинамический процесс двигателя.

Условия, в которых работает поршень, экстремальны и характеризуются высоким давлением, температурой и инерционными нагрузками. Поэтому поршни на современных двигателях изготавливаются из легкого, прочного и термостойкого материала – алюминиевого сплава, реже из стали. Поршни изготавливаются двумя способами – литьем под давлением или штамповкой, т.н. кованые поршни.

Поршень цельный конструктивный элемент, который условно разделяют на головку (в некоторых источниках ее называют днище) и юбку. Форма и конструкция поршня в значительной степени определяются типом двигателя, формой камеры сгорания и процессом сгорания, протекающим в ней. Поршень бензинового двигателя имеет плоскую или близкую к плоской поверхность головки. В ней могут быть выполнены канавки для полного открытия клапанов. Поршни двигателей с непосредственным впрыском топлива имеют более сложную форму. В головке поршня дизельного двигателя выполняется камера сгорания определенной формы, которая обеспечивает хорошее завихрение и улучшает смесеобразование.

Ниже головки поршня выполняются канавки для установки поршневых колец. Юбка поршня имеет конусообразную или криволинейную (бочкообразную ) форму. Такая форма юбки компенсирует температурное расширение поршня при нагреве. При достижении рабочей температуры двигателя поршень принимает цилиндрическую форму. Для снижения потерь на трение на боковую поверхность поршня наносится слой антифрикционного материала (дисульфид молибдена, графит ). В юбке поршня выполнены отверстия с приливами (бобышки ) для крепления поршневого пальца.

Охлаждение поршня осуществляется со стороны внутренней поверхности различными способами:

  1. масляный туман в цилиндре;
  2. разбрызгивание масла через отверстие в шатуне;
  3. разбрызгивание масла специальной форсункой;
  4. впрыскивание масла в специальный кольцевой канал в зоне колец;
  5. циркуляция масла по трубчатому змеевику в головке поршня.

Поршневые кольца образуют плотное соединение поршня со стенками цилиндра. Они изготавливаются из модифицированного чугуна. Поршневые кольца основной источник трения в двигателе внутреннего сгорания. Потери на трение в кольцах достигают до 25% всех механических потерь в двигателе.

Число и расположение колец зависит от типа и назначения двигателя. Самая распространенная схема – два компрессионных и одно маслосъемное кольцо. Компрессионные кольца препятствуют прорыву газов из камеры сгорания в картер двигателя. Первое компрессионное кольцо работает в наиболее тяжелых условиях. Поэтому на поршнях дизельных и ряда форсированных бензиновых двигателей в канавке кольца устанавливается стальная вставка, повышающая прочность и позволяющая реализовать максимальную степень сжатия. Компрессионные кольца могут иметь трапециевидную, бочкообразную, коническую форму, некоторые выполняются с порезом (вырезом).

Маслосъемное кольцо удаляет излишки масла с поверхности цилиндра и препятствует попаданию масла в камеру сгорания. Кольцо имеет множество дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

Соединение поршня с шатуном осуществляется с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Имеется несколько способ установки поршневого пальца. Самый популярный т.н. плавающий палец , который имеет возможность проворачиваться в бобышках и поршневой головке шатуна во время работы. Для предотвращения смещения пальца он фиксируется стопорными кольцами. Значительно реже применяется жесткое закрепление концов пальца в поршне или жесткое закрепление пальца в поршневой головке шатуна.

Поршень, поршневые кольца и поршневой палец носят устоявшееся название поршневая группа.

Поршни должны противостоять очень высокой температуре и высокому давлению на протяжении всех четырех тактов. Поршни испытывают высокие нагрузки, особенно в форсированных и гоночных двигателях. Двигателя с турбо надувом, механическими нагнетателями или впрыском закиси азота, более требовательны к прочности поршня. Добавьте к этому возможность взрыва, и Вы спрашиваете слишком много от этих слизняков. При высокой форсировке двигателя, где поставлена задача добиться максимума мощности использование литых поршней недостаточно. Все детали поршня показаны на рисунке ниже.

На примере поршень дизельного двигателя.

Производство поршней

Обычно OEM поршни изготавливают из эвтектического сплава, обеспечивающего точность литья, и имеют состав с высоким содержанием диоксида кремния. Такие поршни гораздо прочнее и стабильнее, чем обычные литые и их применение возможно до примерно 400 лошадиных сил.

Кованные поршни имеют более сложную технологию производства, но и обладают лучшими характеристиками. На первой стадии кусок горячего сплава алюминия подвергают ковке, а затем проводится механическая обработка для придания формы. Заготовка поршня попадает на станок ЧПУ, после чего получается высокоточная деталь. Кованные поршни стоят дороже в основном из-за большого количества отходов и обработки на ЧПУ станке.

Эти макеты показывают толщину металла поршня для турбо надуву (слева) и для впрыска закиси азота (справа)

Постройка двигателя, рассчитанного на высокую степень сжатия или использование надува подразумевает использование кованных поршней, способных лучше противостоять высоким температурам и повышенному давлению.

Вертикальные газовые отверстия

Эти небольшие, вертикальные дыры в донышке поршня по всему периметру позволяют давлению при сгорании топливной смеси проникать за первое компрессионное кольцо. Это увеличивает герметичность камеры сгорания но и повышает износ кольца (давление сильно прижимает кольцо к стенкам цилиндра). Во время работы, кроме рабочего хода, первое компрессионное кольцо подвергается обычному давлению, как в обычном поршне и соответственно меньшую силу трения, собственно в этих режимах нет необходимости сильно прижимать кольцо к цилиндру.

Такие схемы поршней часто применяются в драг рейсинге.

Вертикальные отверстия благодаря давлению в режиме рабочего хода, позволяют прижимать верхнее компрессионное кольцо к цилиндру, чтобы обеспечить лучшую герметичность.

Боковые газовые отверстия в канавках колец

Эти очень мелкие углубления, сделанные в верхней части канавки верхнего поршневого кольца по всей окружности поршня, что позволяет прижимать кольцо газами к нижней плоскости канавки поршневого кольца и увеличить тем самым герметичность.

Этот тип часто используется в кольцевых гонках.

Мелкие канавки от верхнего кольца до кромки дна поршня-жаровой пояс.

Крупно выполненные канавки, некоторые делают едва заметный жаровой пояс.

Некоторые поршни имеют серию узких канавок, нанесенных вокруг поршня между первым компрессионным кольцом и кромкой дна поршня. Эти углубления сделаны для уменьшения контактирующей площади с цилиндром, когда поршень находится в верхней или нижней мертвой точке. Так же эти канавки служат для гашения пламени на подходе к кольцу

Компенсационная канавка

Компенсационная канавка выполняется на перемычке между компрессионными кольцами. Это углубление создает дополнительный объем для прорвавшихся газов через первое кольцо тем самым уменьшая давление между кольцами и это обеспечивает меньшее колебание первого кольца, оно лучше удерживается на дне своей канавки сохраняя герметичность камеры сгорания.

Так же посмотрите следующие материалы конструктивные особенности

Поршень занимает центральное место в процессе преобразования энергии топлива в тепловую и механическую. Поговорим про поршни двигателя, что это такое и как они работают.

Что это такое?

Поршень - деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя. Нужен для изменения давления газа в механическую работу, или наоборот - возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла. Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки).

В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на некоторых современных авто делают специальные выемки под клапаны. Это нужно, чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт. Днище поршня дизеля делают с выемкой, которая зависит от степени смесеобразования и расположения клапанов, форсунок. При такой форме днища лучше перемешивается воздух с поступающим в цилиндр топливом.

Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Поэтому изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.


С тех пор мощность моторов выросла многократно. Температура и давление в цилиндрах современных автомобильных двигателей (особенно дизельных моторов) стали такими, что алюминий подошёл к пределу своей прочности . Поэтому в последние годы подобные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Помимо прочего, уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре "поршень-цилиндр, что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров. Таким образом облегчим мотор.

Какие требования?

  • Поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен быть устойчивым к высокой температуре, давлению газов и надежно уплотнять канал цилиндра.
  • Он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износа.
  • Испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.
  • Совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Основное назначение

Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя . Температура сгоревших газов достигает 2000 градусов. Только часть энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель. То, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым.


Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток , – это поршневые кольца . Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея доступ к наиболее нагретым местам мотора, масляный туман уносит и отдает в поддон картера значительную часть тепла от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести.

Третий путь. Часть тепла отбирает на нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер; отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

В силу большей значимости следует уделить пристальное внимание передаче тепла через поршневые кольца. Понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.


Вспомним такую характеристику, как компрессия . Представим, что кольцо не прилегает по всей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается возможности охлаждаться. Как результат – прогар и выкрашивание части, прилегающей к месту утечки.

Сколько колец нужно для поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. При уменьшении их количества и высоты ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.