Авиационные двигатели. Реактивный двигатель Перспективные концепции авиационных двигателей

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели - устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в , карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

О паровых двигателях

Хронология этого изобретения ведёт свой отсчёт от эпохи Архимеда, придумавшего пушку, стрелявшую с помощью пара. Затем следует череда славных имён, предлагавших свои проекты. Наиболее эффективный вариант устройства принадлежит русскому изобретателю Ивану Ползунову. В отличие от своих предшественников он предложил непрерывный ход рабочего вала за счёт использования попеременной работы 2-х цилиндров.

Сгорание топлива и образование пара у паровых машин происходит вне рабочей камеры. Поэтому их называют двигателями внешнего сгорания.

По такому же принципу образуется рабочее тело в паровых и газовых турбинах. Их далеким прообразом явился шар, вращаемый паром. Автором этого механизма был учёный Герон, творивший свои машины и приборы, в древней Александрии.

О двигателях внутреннего сгорания

В конце XIX века немецким конструктором Августом Отто была предложена конструкция ДВС с карбюратором, где приготавливается топливовоздушная смесь.

Остановимся более подробно на его работе. Каждый цикл работы состоит из 4-х тактов: впуска, сжатия, рабочего хода и выпуска.

Во время первого такта горючая смесь впрыскивается в цилиндр и сжимается поршнем. Когда компрессия достигает максимума, срабатывает система электроподжига (искра от свечи). В результате этого микровзрыва температура в камере сгорания достигает 16 000 - 18 000 градусов. Образующиеся газы давят на поршень, толкают его, проворачивая соединенный с поршнем коленчатый вал. Это и есть рабочий ход, приводящий автомобиль в движение.

А охладившиеся газы через выпускной клапан выбрасываются в атмосферу. Пытаясь улучшить эффективность работы устройства, разработчики увеличивали степень сжатия горючей смеси, но тогда она самовоспламенялась «досрочно».

Немецкий инженер Дизель нашел интересный выход из этого затруднения…

В цилиндрах дизеля за счёт движения поршня сжимается чистый воздух. Это позволило в несколько раз увеличить степень сжатия. Температура в камере сгорания достигает 900 град. В конце такта сжатия туда впрыскивается солярка. Её мелкие капли, смешавшись со столь разогретым воздухом, самовоспламеняются. Образующиеся газы, расширяясь, давят на поршень, осуществляя рабочий ход.

Итак, дизельные двигатели отличаются от карбюраторных:

  • По роду используемого топлива. Карбюраторные двигатели - бензиновые. Дизельные - потребляют исключительно солярку.
  • Дизель на 15–20 % экономичнее карбюраторных двигателей за счёт большей степени сжатия, но его обслуживание дороже, чем у его соперника - бензинового двигателя.
  • В числе минусов дизеля - в холодные российские зимы солярка загустевает, нужен её подогрев.
  • Последние исследования американских учёных показали, что выбросы от дизельных двигателей по составу менее вредны, чем от их бензиновых аналогов.

Многолетняя конкуренция между двумя видами ДВС завершилась распределением сферы их использования. Дизельные двигатели как более мощные устанавливаются на морском транспорте, на тракторах и автомобилях большой грузоподъёмности, а карбюраторные - на автомобили малой и средней грузоподъемности, на моторные лодки, мотоциклы и т. д.

Коэффициент полезного действия (КПД)

Эффективность эксплуатации любого механизма определяется его КПД. Паровой двигатель, выпускающий отработанный пар в атмосферу, имеет весьма низкий КПД от 1 до 8%, бензиновые двигатели до 30%, обычный дизельный двигатель до 40%. Безусловно, во все времена инженерная мысль не останавливалась и искала пути повышения КПД.

Талантливый французский инженер Сади Карно разработал теорию работы идеального теплового двигателя.

Его рассуждения были следующими: чтобы обеспечить повторяемость циклов, необходимо, чтобы расширение рабочего вещества при нагревании сменялось его сжатием до первоначального состояния. Этот процесс может совершаться только за счёт работы внешних сил. Причём работа этих сил должна быть меньше полезной работы самого рабочего тела. Для этого следует понизить его давление путём охлаждения в холодильнике. Тогда график всего цикла будет иметь вид замкнутого контура, он то и стал называться циклом Карно. Максимальный КПД идеального двигателя вычисляется по формуле:

Где η сам коэффициент полезного действия, T1 и T2 абсолютные температуры нагревателя и холодильника. Они вычисляются по формуле T= t+273, где t температура по Цельсию. Из формулы видно, что для увеличения КПД необходимо увеличить температуру нагревателя, что ограничено жаропрочностью материала, или понизить температуру холодильника. Максимальный КПД будет при Т= 0К, что также технически неосуществимо.

Реальный коэффициент всегда меньше КПД идеального теплового двигателя. Сравнивая реальный коэффициент с идеальным, можно определить резервы для совершенствования имеющегося двигателя.

Работая в этом направлении, конструкторы снабдили бензиновые двигатели последнего поколения инжекторными системами подачи топлива (впрыскивателями). Это позволяет с помощью электроники добиться его полного сгорания и соответственно увеличить КПД.

Изыскиваются пути уменьшения трения соприкасающихся деталей двигателя, а также улучшения качества используемого топлива.

Прежде природа угрожала человеку, а теперь человек угрожает природе

Со следствиями неразумной деятельности человека приходится сталкиваться уже нынешнему поколению. И значительный вклад в нарушение хрупкого равновесия природы вносит огромный объём тепловых двигателей, используемых на транспорте, в сельском хозяйстве, а также паровых турбин электростанций.

Это вредное воздействие проявляется в колоссальных выбросах и повышении содержания углекислого газа в атмосфере. Процесс сгорания топлива сопровождается потреблением атмосферного кислорода в таких масштабах, что это превышает его выработку всей земной растительностью.

Значительная часть тепла от двигателей рассеивается в окружающей среде. Этот процесс, усугубляемый парниковым эффектом, приводит к повышению среднегодовой температуры на Земле. А глобальное потепление чревато катастрофическими последствиями для всей цивилизации.

Чтобы ситуация не усугублялась, необходима эффективная очистка, отработанных газов, переход на новые экологические стандарты, предъявляющие более жёсткие требования к содержанию вредных веществ в выхлопных газах.

Очень важно использовать только качественное топливо. Хорошие перспективы ожидаются от использования в качестве горючего водорода, поскольку при его сгорании вместо вредных выбросов образуется вода.

В недалеком будущем значительная часть автомобилей, работающих на бензине, будет заменена электромобилями.

Если это сообщение тебе пригодилось, буда рада видеть тебя

«Использование тепловых двигателей» - Проследим историю развития тепловых двигателей. Французский инженер Кюньо. На водном транспорте. Загрязнение окружающей среды. Что вы наблюдали. В автомобильном транспорте. Применение тепловых двигателей. Тепловые двигатели. Начало истории создания реактивных двигателей. Проект бензинового двигателя.

«Паровой двигатель» - Длина первой железной дороги составляла 850 м. Паровая машина на старой сахарной фабрике, Куба. Первые промышленные двигатели. Паровой молот. Повышение эффективности двигателя Уатта привело к использованию энергии пара в промышленности. Силовые машины, которые редко останавливаются и не должны менять направление вращения.

«Применение тепловых двигателей» - Проблемы охраны окружающей среды. Первый космонавт планеты. Основные части двигателя внутреннего сгорания. Шар Герона. К.Э. Циолковский. Виды тепловых двигателей. Исторический курьез. Двигатель внутреннего сгорания. Нагреватель. Двигатели. Формулы для расчета КПД. Проект аппарата. Принцип реактивного движения.

«Тепловые двигатели и машины» - Виды тепловых двигателей. Разнообразие видов тепловых машин. Двигатель внутреннего сгорания. Греческий математик. Тепловые машины. Схема работы. Реактивный двигатель. Геронов шар. Газовая турбина. Преимущества электромобиля. Экологические проблемы использования тепловых машин. Такты работы двухтактного двигателя.

««Тепловые двигатели» 8 класс» - Двигатель внутреннего сгорания. Коэффициент полезного действия. Тепловые двигатели. Тепловая машина. Принцип действия ракетного двигателя. Диски ротора. Инженер Сади Карно. Газовая турбина. Паровая машина. Реактивный двигатель. Поршень.

«Тепловые двигатели, виды тепловых двигателей» - Диаграмма теплового баланса современных ДВС. Достижение максимального КПД. Современные двигатели неполного объёмного расширения. Что возможно и невозможно в тепловых двигателях. Газотурбинные двигатели полного необъёмного расширения. Поршневые двигатели Отто и Дизеля. Роторно-лопастной двигатель внутреннего сгорания.

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.

История

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.



Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Истребитель МИГ-15

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.

Содержание статьи

АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА , двигатель и движитель летательного аппарата, единый комплекс устройств и агрегатов, обеспечивающих силу тяги и подъемную силу для полета и ускорения летательного аппарата. Автомобиль движется благодаря трению покоя между колесом и дорогой. Воздушная Среда не обладает трением покоя, поэтому и сила тяги, и подъемная сила летательного аппарата определяются изменением количества движения среды, в которой он движется. Любой авиационный движитель (например, винт) захватывает поток воздуха, натекающий на летательный аппарат, и отбрасывает его с увеличенной скоростью назад, что приводит к возникновению реактивной силы, направленной вперед и равной изменению количества движения в единицу времени. Кроме того, должна существовать поддерживающая сила, благодаря которой летательный аппарат не падает. Самолет поддерживают крылья, которые тоже изменяют количество движения воздуха, отбрасывая его вниз и создавая подъемную силу. При движении самолета в воздушной среде возникает сила сопротивления движению, для преодоления которой нужна сила тяги, создаваемая двигателем. Подъемная сила и сила тяги вертолета создаются вращающимися лопастями. На рис. 1 приведена схема создания этих сил летательными аппаратами.

Физические принципы создания сил летательным аппаратом.

Для создания силы тяги и подъемной силы необходимо выполнение трех условий. Во-первых, необходим источник энергии, поскольку нужно увеличить скорость, а значит, и кинетическую энергию потока воздуха. Почти во всех случаях энергию на борту самолета или вертолета получают при сжигании углеводородного топлива (или водорода) с кислородом воздуха. В качестве вспомогательной используется электрическая энергия, запасенная в аккумуляторах. Первоначальный энтузиазм, вызванный овладением атомной энергией, не привел к созданию практичного ядерного двигателя для летательного аппарата.

Во-вторых, поскольку при горении выделяется тепловая энергия, на борту должно иметься средство преобразования тепловой энергии в механическую, которая может быть использована для увеличения кинетической энергии потока. Преобразование энергии происходит в тепловом двигателе (см. ниже ). На небольших винтовых самолетах до сих пор устанавливаются поршневые двигатели. На крупных современных самолетах обычно используются газотурбинные двигатели, основные агрегаты которых – компрессор, камера сгорания и турбина, вращающая компрессор. По второму закону термодинамики доля тепловой энергии, превращаемая в механическую, определяется температурой источника тепла (в данном случае температурой горения топлива) и температурой окружающей среды. Для углеводородных топлив температура горения составляет около 2500 К. Температура в стратосфере, где летают современные самолеты, около 200 К; поэтому теоретический (термический) КПД равен 1 - 200/2500 = 0,92 или 92%, что, конечно, является высоким значением; однако реальный КПД значительно ниже, поскольку эффективная температура рабочего тела в камере сгорания существенно ниже температуры горения топлива, а кроме того, возникают потери на сжатие и расширение в воздухозаборнике и турбокомпрессоре. Реальный КПД современных двигателей летающих в стратосфере самолетов около 40%.

В-третьих, должно быть средство, которое обеспечивало бы передачу механической энергии потоку для увеличения его скорости (или количества движения). Для этого существует несколько возможностей. Энергия двигателя может передаваться воздушному винту, который ометает большую площадь потока, т.е. захватывает большой расход, и несколько увеличивает его скорость. Для привода винта используют поршневые и турбовинтовые (рис. 2) двигатели. Существуют двигатели, которые механическую энергию затрачивают на увеличение кинетической энергии горячих выхлопных газов, расширяющихся в сопле; это – турбореактивные двигатели (рис. 3).


Полезная работа двигателя – работа, затрачиваемая на движение летательного аппарата. Полезная мощность – работа, совершаемая в единицу времени, – равна произведению силы тяги на скорость летательного аппарата. Следовательно, тяговый КПД (КПД движителя) равен отношению полезной мощности к мощности двигателя. Можно показать, что этот КПД равен удвоенной скорости летательного аппарата, деленной на сумму скорости полета и скорости реактивной струи (относительно летательного аппарата). С другой стороны, тяга равна массовому расходу реактивной струи, умноженному на разность скоростей струи и аппарата. Таким образом, высокая скорость реактивной струи приводит к большой тяге на единицу расхода и к малому тяговому КПД. Это соотношение показано на рис. 4.

Воздушный винт, захватывая большой расход и сравнительно ненамного увеличивая скорость струи, обладает высоким КПД. Турбореактивный двигатель представляет другую крайность: расход в нем сравнительно невелик (поперечное сечение двигателя невелико), а скорость струи высока, поэтому он имеет невысокий КПД. Турбовентиляторные двигатели (рис. 5) похожи на турбовинтовые тем, что вентилятор ускоряет дополнительный расход рабочего тела, не проходящий через турбокомпрессор, который затем истекает через сопло. Скорость реактивной струи в турбовентиляторном двигателе ниже, чем в турбореактивном, но выше, чем в турбовинтовом; соответственно, он имеет промежуточное значение КПД. Самое широкое применение турбовентиляторные двигатели нашли в современных дозвуковых транспортных самолетах.

Типы авиационных двигателей.

Любая авиационная силовая установка должна иметь в своем составе указанные выше агрегаты, но они могут быть самыми разными в зависимости от условий эксплуатации двигателя. К ним относятся: скорость и высота полета, маневренность, дальность, взлетно-посадочные требования. Кроме этих условий, на характеристики двигателя влияют отношение тяги к расходу топлива (чаще используют величину, обратную этому отношению, – удельный расход топлива), отношение тяги к весу силовой установки, уровень шума при взлете и посадке, капитальные затраты и стоимость обслуживания, надежность. Все эти критерии необходимо рассмотреть при выборе силовой установки для конкретного применения.

Главным критерием, определяющим выбор силовой установки, является скорость полета. Скорость полета лучше всего определять числом Маха – отношением скорости полета летательного аппарата к скорости звука на заданной высоте. При M

Дожигание увеличивает тягу по сравнению с двигателем, в котором топливо сгорает только в камере, однако при этом существенно возрастает расход топлива, которое всегда хранится на борту самолета. На самолетах, которые длительное время должны лететь со скоростью 2 6 называются гиперзвуковыми; при таких скоростях, вплоть до орбитальных (число Маха около 25), предполагается использовать прямоточные двигатели, в том числе со сверхзвуковым горением. В прямоточных двигателях повышение давления и температуры, необходимое для эффективной работы, достигается за счет кинетической энергии набегающего потока. Если перед зоной подачи топлива в поток он тормозится до скорости, меньшей скорости звука, то двигатель называется просто прямоточным; если же топливо впрыскивается в сверхзвуковой поток, то – прямоточным со сверхзвуковым горением. Прямоточный двигатель со сверхзвуковым горением подходит для воздушно-космических самолетов, которые должны летать при гиперзвуковых скоростях.

Тепловой двигатель.

Главным элементом всех рассмотренных выше силовых установок является тепловой двигатель, преобразующий тепловую энергию в механическую. В тепловом двигателе происходит изменение состояния рабочего тела, как правило, в результате химической реакции горения. В процессе горения повышается температура рабочего тела. В поршневых двигателях температура повышается при почти постоянном объеме и соответствующем увеличении давления; в газотурбинных двигателях температура повышается при почти постоянном давлении. В поршневом двигателе продукты сгорания расширяются в рабочем цилиндре, а в газотурбинном – в лопаточных аппаратах турбины; при этом часть выработанной турбиной энергии тратится на сжатие воздуха компрессором, а часть – на вращение винта, вентилятора или ротора вертолета. В турбореактивном двигателе турбина выполняет только ту работу, которая необходима для вращения компрессора, а основная часть энергии рабочего тела преобразуется в силу тяги в процессе расширения потока в сопле.

Поскольку термический КПД теплового двигателя увеличивается с повышением температуры и давления рабочего тела, в авиационных двигателях используют высокие степени повышения давления. В современных авиационных газотурбинных двигателях степень повышения давления достигает 25 и даже больше; в поршневых двигателях обычное значение степени сжатия 8. Если число Маха полета заметно больше единицы, во входном диффузоре происходит существенное повышение давления (примерно в 2 раза при M = 1 и почти в 20 раз при M = 3). Эффективная степень сжатия в газотурбинном двигателе равна произведению степени сжатия во входном диффузоре на степень сжатия в компрессоре, поэтому при высоких числах Маха двигатели даже с небольшой степенью сжатия компрессора имеют хороший термический КПД. Турбореактивные двигатели, рассчитанные на сверхзвуковые скорости полета, должны иметь компрессор со степенью сжатия не больше 12.

С ростом температуры сгорания повышается не только термический КПД, но и мощность, поскольку тепловая (внутренняя) энергия рабочего тела пропорциональна его температуре. Следовательно, очень желательно повышать температуру в камере сгорания, а значит, и на входе в турбину; однако эта температура ограничивается материалом турбинных лопаток, обтекаемых высокотемпературным потоком. Совершенствование авиационных материалов позволяет повысить рабочую температуру лопаток. Однако перспективнее охлаждение лопаток, что позволяет поддерживать их температуру ниже температуры горячих газов. Это достигается за счет отбора некоторого количества воздуха на выходе из компрессора и подачи его для охлаждения турбинных лопаток. Повышение рабочей температуры турбины, достигнутое за период 1950–1990 годов, приведено на рис. 7. На рис. 8 показано достигнутое улучшение экономичности двигателя.

Компрессор и турбина.

В газотурбинных двигателях процессы сжатия и расширения осуществляются лопаточными машинами. В лопаточных машинах изменение энергии потока, приводящее к его сжатию или расширению, вызвано движением лопаток, которые поворачивают поток и изменяют его скорость, в отличие от поршневых двигателей, в том числе роторного, в которых степень сжатия зависит главным образом от положения поршня.

Компрессоры авиационных двигателей довольно разнообразны. Наиболее широко применяется осевой компрессор (рис. 3), состоящий из перемежающихся рядов вращающихся (рабочих) и неподвижных (направляющих) лопаток; ряд рабочих и ряд направляющих лопаток составляют ступень компрессора. Рабочие лопатки совершают работу за счет внешней энергии и увеличивают энергию потока. В направляющем аппарате происходит торможение потока, ускоренного в рабочем колесе, и растет давление, а с ним вместе и температура. Каждая ступень компрессора последовательно увеличивает давление рабочего тела, в результате чего в многоступенчатом компрессоре достигается высокая степень повышения давления.

Турбина работает в принципе так же, как компрессор, за исключением того, что на рабочих лопатках поток совершает работу; при этом его энергия уменьшается. Мощность, вырабатываемая турбиной, частично идет на вращение компрессора, а частично – на вращение винта, вентилятора или ротора вертолета.

И в компрессоре, и в турбине действующие на лопатку силы пропорциональны плотности набегающего потока и квадрату его скорости в относительном движении. «Мощность лопатки» равна действующей на лопатку силе, умноженной на ее скорость. Итак, если скорость потока в относительном движении примерно равна окружной скорости лопатки, то мощность, передаваемая потоку или отбираемая от него, пропорциональна кубу скорости лопатки. Расход через рабочее колесо пропорционален окружной скорости лопатки, поэтому мощность на единицу массы расхода пропорциональна квадрату скорости лопатки. Относительное повышение температуры в компрессоре пропорционально квадрату числа Маха лопатки. Поэтому желательно, чтобы окружные скорости лопаток в авиационном компрессоре были околозвуковыми или сверхзвуковыми (при нормальных условиях 300 м/с или более). Такие скорости значительно выше скоростей поршня (примерно 10 м/с) в поршневом двигателе.

Высокие окружные скорости лопаточных машин приводят к большим центробежным нагрузкам во вращающихся лопатках и в диске, на котором они смонтированы; это выдвигает жесткие требования к проектированию и изготовлению лопаточных машин. Материал для турбин должен выдерживать высокие нагрузки при высоких температурах. Эти требования вместе с необходимостью малого веса и хорошей надежностью приводят к высокой стоимости газотурбинных двигателей. Появление новых прочных и легких материалов позволяет увеличить обороты компрессора и турбины и получить более высокие степени повышения давления или при данной степени повышения давления уменьшить число ступеней.

Винты, вентиляторы и воздухозаборники.

Винт воздействует на поток так же, как рабочее колесо компрессора, у него только меньше лопастей и ниже степень повышения давления; он наиболее эффективен, как указывалось выше, для небольших скоростей полета. Однако с ростом скорости полета относительная скорость концов лопастей (векторная сумма скорости полета и окружной скорости лопасти) приближается к скорости звука, что происходит задолго до достижения звуковой скорости полета. Достижение на концах лопастей скорости звука приводит к резкому увеличению местного сопротивления и уровня шума, что ограничивает скорость полета винтовых самолетов.

Турбовентиляторные и турбореактивные двигатели для приема набегающего потока оборудованы воздухозаборниками (рис. 5). Воздухозаборник позволяет уменьшить скорость набегающего потока до приемлемой для вентилятора. При взлете в воздухозаборнике происходит плавное ускорение потока, а при полете на крейсерском околозвуковом режиме – торможение до требуемого значения скорости. В итоге вентилятор вне зависимости от скорости полета работает при оптимальных условиях. По сути дела, вентилятор – просто низконапорный компрессор; такой движитель очень удобен для дозвуковых транспортных самолетов.

Стремление повысить экономичность заставляет разрабатывать новые, более совершенные типы двигателей: высокоскоростные турбовинтовые или турбовентиляторные без внешнего кольца. Двигатель второго типа имеет два противоположно вращающихся винта с очень тонкими лопастями, загнутыми назад по вращению для уменьшения эффективного числа Маха на концах лопастей и, следовательно, для снижения уровня потерь и шума, связанных с образованием местных скачков уплотнения.

При полете со сверхзвуковыми скоростями воздухозаборник должен перестроить набегающий сверхзвуковой поток в дозвуковой, поэтому конструкция воздухозаборника в этом случае становится сложнее. От сверхзвуковой до звуковой скорости поток тормозится в системе скачков уплотнения, образующихся на носовом конусе или клине, а затем в расширяющемся диффузоре происходит дальнейшее торможение потока до значения скорости на входе в компрессор.

К истории авиационных двигателей.

Уже на заре авиации было ясно, что характеристики двигателя определяют возможности полета самолета. Огромные усилия были затрачены на разработку и совершенствование силовых установок с высоким отношением мощности к весу. Первоначально пробовали применить на самолете паровые машины, но паровая машина слишком тяжела и малоэффективна для применения на летательном аппарате. Братья Райт для своего первого удачного самолета использовали поршневой двигатель с искровым зажиганием. Такие непрерывно совершенствовавшиеся двигатели применялись до конца Второй мировой войны, когда впервые в немецкой авиации появился истребитель с двумя турбореактивными двигателями. Турбореактивный двигатель был разработан независимо фон Охайном в Германии в 1939 и Ф.Уиттлом в Англии в 1941. В последующие годы газотурбинные двигатели быстро вытеснили поршневые в военной авиации: турбореактивные – на истребителях и бомбардировщиках и турбовинтовые – в транспортной авиации.

Первые пассажирские самолеты с турбореактивными двигателями появились в конце 1940-х годов (британская «Комета»); в целом самолеты оказались удачными, однако уровень шума при взлете был неприемлем. Этот фактор, а также стремление к экономии топлива привели в начале 1960-х годов к внедрению турбовентиляторных двигателей. Меньшая скорость реактивной струи позволила существенно снизить шум. Позже усовершенствованные турбовентиляторные двигатели с высокой степенью двухконтурности (рис. 5) были установлены на широкофюзеляжных самолетах, таких, как «Боинг-747», DC-10, «Локхид-1011». Турбовентиляторные двигатели тягой до 400 кН сейчас повсеместно применяются на пассажирских самолетах.

На современных высококлассных боевых самолетах стоят турбореактивные или турбовентиляторные двигатели с форсажом; впервые турбовентиляторный двигатель с форсажом был установлен на многоцелевой истребитель F-111, который должен был летать как на дозвуковых, так и на сверхзвуковых скоростях. По существу, все современные истребители и многоцелевые самолеты используют такие двигатели с разной степенью двухконтурности для разных применений. С каждым новым поколением двигателей повышаются их удельная мощность и удельный импульс.

Условия, необходимые для работы теплового двигателя

Тепловым двигателем называется машина, в которой происходит превращение энергии, полученной при сгорании топлива, в механическую энергию.

Вещество, производящее работу в тепловых двигателях, называется рабочим телом или рабочим веществом . В паровых двигателях таким рабочим веществом является пар, а в двигателях внутреннего сгорания – газ.

Установим общие условия (относящиеся ко всем тепловым двигателям), которые необходимы, чтобы преобразовать энергию топлива в энергию движения машин и механизмов. Эти условия мы выясним на примере работы паросиловой установки, схема которой изображена на рисунке.

Одна из частей паросиловой установки – топка с паровым котлом С. В котле образуется пар, который под давлением направляется по трубе М в цилиндр паровой машины Е. Здесь пар расширяется и, двигая поршень, совершает работу. Посредством передающего механизма А возвратно-поступательное движение поршня преобразуется во вращательное движение маховика, который приводит в движение рабочие части станков, сельскохозяйственных машин, генераторов тока и т. д.

Реактивные двигатели

Развитие авиации сводится в основном к увеличению скорости, высоты, грузоподъёмности, дальности, надёжности полёта самолётов, что в значительной степени зависит от возможностей совершенствования двигателя.

Двигатели внутреннего сгорания с винтами-пропеллерами уже не обеспечивают увеличения скорости и высоты полёта самолётов. Причина этого заключается в следующем.

В самолёте с воздушным винтом последний, вращаясь, отбрасывает воздух, заставляя его двигаться ускоренно. По третьему закону Ньютона , отбрасываемая масса воздуха действует на винт, толкает его вперёд, создавая этим тягу, движущую весь самолёт. Тяга получается, таким образом, как результат ответного воздействия (реакции) воздуха, отбрасываемого винтом. Винт служит посредником, который за счёт энергии топлива совершает работу по передвижению самолёта.

Коэффициент полезного действия тепловых двигателей

При устройстве тепловых двигателей важно прежде всего добиться, чтобы как можно большее количество энергии сгораемого топлива превратилось в механическую энергию, иначе говоря, при минимальной затрате топлива получилась максимальная работа. Тогда двигатель будет экономичным. Зная количество теплоты Q 1 , переданное рабочему телу от нагревателя, и количество теплоты Q 1 – Q 2 , превращенное в механическую энергию, можно оценить степень экономичности этого процесса превращения.

Отношение количества теплоты, превращенной машиной о механическую энергию, к количеству теплоты, полученной от нагревателя, называется коэффициентом полезного действия тепловой машины (к. п. д.).

К. п. д. машины принято обозначать буквой η (греч. «эта»):

η = (Q 1 – Q 2) : Q 1

Изучая условия получения работе за счёт внутренней энергии пара в паровых машинах, Карнов 1824 г. установил, что коэффициент полезного действия любого реального теплового двигателя не может превышать величины (Т 1 – Т 2) : T 1 , где Т 1 – абсолютная температура нагреватели, а Т 2 – абсолютная температура холодильника. Чем ближе к. п. д. двигателя к этой величине, тем двигатель совершеннее. Этот вывод хорошо оправдывается на практике.

Работа при расширении газа

Представим себе, что в цилиндре под поршнем, площадь которого S, находится какой-нибудь газ, давление которого равно р. Сила, с которой газ давит на поршень, определяется по формуле F = pS. Если нагревать газ при постоянном давлении, то он расширится и поршень переместится на некоторое расстояние h.

Газ при этом совершит работу А = pSh. Но Sh = V 2 – V 1 есть увеличение объёма газа, следовательно:

A = p · (V 2 – V 1)

Работа газа при изобарном расширении равна произведению давления газа на увеличение его объёма.

Дизельный двигатель

От чего зависит коэффициент полезного действия двигателя внутреннего сгорания? Как и во всякой тепловой машине, в этом двигателе имеется источник энергии – нагреватель (таким источником является сгорающее топливо) и холодильник – атмосферный воздух. Чем выше разность температур между ними, тем выше к. п. д. двигателя.

Так как температура газов, получающихся при сгорании смеси, велика (порядка 1600–1800 о С), то к. п. д. двигателей внутреннего сгорания значительно выше к. п. д. паровых машин. На практике к. п. д. двигателей внутреннего сгорания достигает 20–30%.

Как можно ещё повысить к. п. д. этого двигателя? Опыт и расчёты показывают, что для этого нужно добиться большей степени сжатия смеси. Однако в двигателях карбюраторного типа очень сильно сжимать горючую смесь нельзя, так как она, сильно нагреваясь, будет преждевременно самовоспламенятся.

Немецкий инженер Дизель изобрёл двигатель, названный его именем, работающий по такому циклу, который позволяет избежать указанных выше затруднений и значительно повысить к. п. д.

Паровые турбины

Среди тепловых двигателей важное место занимают паровые турбины. В отличие от поршневых паровых двигателей в паровых турбинах используется не энергия упругости пара, а кинетическая энергия струн пара.

Предположим, что давление пара в котле равно р 1 . Предоставим пару возможность свободно вытекать из котла через какое-либо отверстие или через насадку – сопло. При истечении через сопло давление пара будет падать, и в устье сопла оно окажется равным некоторому давлению р 2 . Вначале скорость пара равна нулю, при выходе же из сопла она увеличивается; при этом давление пара в сопле падает.

Потенциальная энергия пара при падении его давления уменьшается; соответственно увеличивается кинетическая энергия пара (по закону сохранения и превращения энергии). Вытекающий из сопла пар попадает на лопатки рабочего колеса и приводит его во вращение.

Схема действия одного из типов турбин представлена на рисунке. На валу А насажен диск В, по ободу которого закреплены лопатки L. Против лопаток расположены сопла С, в которые пар поступает из котла. В соплах пар расширяется и, выходя из их устьев с большой скоростью, попадает в каналы, образуемые лопатками, где теряет часть своей кинетической энергии, которая идёт на приведение диска В вместе с валом во вращательное движение. Па рисунке изображено колесо однодисковой турбины Лаваля (без кожуха).

Двигатель внутреннего сгорания

В паровых машинах и паровых турбинах для преобразования энергии топлива в механическую энергию используют водяной пар, который получается в паровых котлах. Наряду с этим существуют тепловые двигатели, в цилиндрах которых одновременно протекают процессы сгорания топлива, выделения при этом энергии и совершения за счёт части её механической работы; такие двигатели называются двигателями внутреннего сгорания . В этих двигателях используется жидкое или газообразное топливо. Жидкое топливо перед сжиганием испаряется или распыляется в воздухе.

Рассмотрим устройство четырёхтактного карбюраторного автомобильного двигателя. Принцип действия двигателей, применяемых на тракторах и самолётах, сходен с автомобильным.

Схема четырёхтактного двигателя внутреннего сгорания и диаграмма работы такого двигателя изображены на рисунке.

Из схемы видно, что внутри цилиндра А может свободно перемещаться поршень В. В верхней части цилиндра имеются два клапана. Через клапан Д производится впуск так называемой горючей смеси, состоящей из воздуха и мельчайших частиц жидкого или газообразного топлива. Клапан Е служит для удаления из цилиндра отработавших газов; С – запальник (свеча), назначение которого – воспламенять находящуюся над поршнем смесь.

Паровые котлы

Одна и основных частей паросиловой установки – котёл. Каждый паровой котел состоит из топки для сжигания топлива, топочного пространства, барабана котла с водяным и паровым пространством, герметически закрытым. Всякий котёл обладает определенной производительностью, измеряемой количеством воды, которую он способен испарить в течение часа при определенных температуре и давлении. Часть котла, которая во время топки приходит в соприкосновение с пламенем, называется поверхностью нагрева .

На рисунке изображен дымогарный котёл. Внутри этого котла помещён ряд трубок А, по которым продукты горения проходят в дымовую коробку В, откуда попадают в дымовую трубу. Такие котлы устанавливают на локомобилях и на паровозах. Многочисленные дымогарные трубки дают огромную поверхность нагрева, с помощью которой в большей степени полезно используется энергия, получающаяся при сгорании топлива. Вода в этих котлах находится между дымогарными трубками.

Можно сделать котлы иначе: по трубкам пустить воду, а между трубками пламя. Такие котлы называются водотрубными .

Виды реактивных двигателей

Все разнообразные виды реактивных двигателей состоят из следующих основных частей: 1) бака с топливом, 2) камеры, где это топливо сгорает, 3) устройств, обеспечивающих подачу топлива в камеру сгорания и истечение продуктов сгорания. В зависимости от вида используемого топлива реактивные двигатели разделяются на две большие группы: двигатели на твёрдом топливе, двигатели на жидком топливе.

Простейшим примером двигателя на твёрдом топливе служит пороховая ракета. В ракете при сгорании пороха образуются газы, которые выбрасываются из тела ракеты, создавая реактивную тягу.

В жидкостных реактивных двигателях (ЖРД) сгорают жидкие горючие вещества (нефтепродукты, спирт и т. д.). Жидкостные реактивные двигатели применялись в конце второй мировой войны для самолётов–снарядов дальнего действия. Скорость самолётов-снарядов достигала 5400 км/ч при дальности полёта 290-300 км и высоте траектории 100 км.

К этому же роду двигателей относится ракетный двигатель для межпланетных сообщений, изобретённый К. Э. Циолковским.

Паровая машина

В паровой машине энергия пара непосредственно преобразуется в энергию движения поршня.

На рисунке изображена схема устройства одноцилиндровой паровой машины. Пар из парового котла по трубе А поступает в парораспределительную коробку В, а оттуда в рабочий цилиндр С – попеременно то с одной, то с другой стороны поршня. Распределение пара производится с помощью золотника Z.

Когда пар поступает в правую часть цилиндра, то он толкает поршень влево, а отработавший пар вытесняется и выходит через выводную трубу (на рисунке эта труба не показана). Затем, наоборот, пар поступает в левую часть цилиндра и толкает поршень вправо.

При помощи штока Е, шатуна F и кривошипа К возвратно-поступательное движение поршня превращается во вращательное движение вала машины и махового колеса. В свою очередь маховое колесо через передающий механизм L и М перемещает золотник, который поочерёдно впускает пар то с правой, то с левой стороны поршня.