Топливные элементы виды. На текущий момент известно несколько видов топливных элементов, которые различаются составом применяемого электролита

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе - являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку нефтяного топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.


Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H 2 => 4H+ + 4e -
Реакция на катоде: O 2 + 4H+ + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: СO 2 + 1/2O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1/2O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2 H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2-).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2- => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2-
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3/2O 2 + 6 H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3/2O 2 => CO 2 + 2H 2 O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4 OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии
Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные
ЩТЭ 50–200°C 40-70% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ - привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.


На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Одной из важнейших задач в нефтедобывающей промышленности является утилизация попутного нефтяного газа. Существующие методы утилизации попутного нефтяного газа имеют массу недостатков, основной из них – они экономически невыгодны. Попутный нефтяной газ сжигается, что наносит огромный вред экологии и здоровью людей.

Инновационные теплоэнергетические установки на топливных элементах, использующие попутный нефтяной газ в качестве топлива, открывают путь к радикальному и экономически выгодному решению проблем по утилизации попутного нефтяного газа.

  1. Одно из основных преимуществ установок на топливных элементах заключается в том, что они могут надежно и устойчиво работать на попутном нефтяном газе переменного состава. Благодаря беспламенной химической реакции, лежащей в основе работы топливного элемента, снижение процентного содержания, например метана, вызывает лишь соответствующее уменьшение выходной мощности.
  2. Гибкость по отношению к электрической нагрузке потребителей, перепаду, набросу нагрузки.
  3. Для монтажа и подключения теплоэнергетических установок на топливных ячейках их внедрения не требуются идти на капитальные затраты, т.к. установки легко монтируются на неподготовленные площадки вблизи месторождений, удобны в эксплуатации, надежны и эффективны.
  4. Высокая автоматизация и современный дистанционный контроль не требуют постоянного нахождения персонала на установке.
  5. Простота и техническое совершенство конструкции: отсутствие движущихся частей, трения, систем смазки дает значительные экономические выгоды от эксплуатации установок на топливных элементах.
  6. Потребление воды: отсутствует при температуре окружающей среды до +30 °C и незначительное при более высоких температурах.
  7. Выход воды: отсутствует.
  8. Кроме того, теплоэнергетические установки на топливных элементах не шумят, не вибрируют, не дают вредных выбросов в атмосферу

В США приняты несколько инициатив, направленных на разработку водородных топливных элементов, инфраструктуры и технологий, чтобы сделать автомобили на топливных элементах практичными и экономичными к 2020 году. На эти цели выделено более, чем один миллиард долларов.

Топливные элементы вырабатывают электричество тихо и эффективно, без загрязнения окружающей среды. В отличие от источников энергии, использующих ископаемое топливо, побочными продуктами от работы топливных элементов являются тепло и вода. Как это работает?

В этой статье мы кратко рассмотрим каждую из существующих топливных технологий на сегодняшний день, а так же расскажем об устройстве и работе топливных элементов, сравним их с другими формами получения энергии. Мы также обсудим некоторые из препятствий, с которыми сталкиваются исследователи, чтобы сделать топливные элементы практичными и доступными для потребителей.

Топливные элементы — это электрохимические устройства преобразования энергии . Топливный элемент преобразует химические вещества, водород и кислород в воду, в процессе чего вырабатывает электричество.

Другое электрохимическое устройство, с которым мы все хорошо знакомы, — аккумулятор . Батарея имеет все необходимые химические элементы внутри себя и превращает этих вещества в электричество. Это означает, что аккумулятор, в конце концов, «умирает» и вы либо выбрасываете, либо снова заряжаете его.

В топливном элементе химические вещества постоянно поступают в него, чтобы он никогда не «умирал». Электричество будет вырабатываться так долго, сколько будет происходить поступление химических веществ в элемент. Большинство топливных элементов, применяемых сегодня, используют водород и кислород.

Водород — наиболее распространенный элемент в нашей Галактике. Однако водород практически не существует на Земле в его элементарной форме. Инженеры и ученые должны извлекать чистый водород из водородных соединений, включая ископаемое топливо или воду. Чтобы добыть водород из этих соединений, нужно затратить энергию в виде высокой температуры или электричества.

Изобретение топливных элементов

Сэр Уильям Гроув изобрел первый топливный элемент в 1839 году. Гроув знал, что воду можно разделить на водород и кислород путем пропускания электрического тока через нее (процесс, называемый электролизом ). Он предположил, что в обратном порядке можно было бы получить электричество и воду. Он создал примитивный топливный элемент и назвал ее газовой гальванической батареей . Поэкспериментировав со своим новым изобретением, Гроув доказал свою гипотезу. Пятьдесят лет спустя, ученые Людвиг Монд и Чарльз Лангер придумали термин топливные элементы при попытке построить практическую модель для производства электроэнергии.

Топливный элемент будет конкурировать со многими другими устройствами конвертации энергии, в том числе с газовыми турбинами на городских электростанциях, двигателями внутреннего сгорания в автомобилях, а так же всевозможными аккумуляторами. Двигатели внутреннего сгорания, так же как и газовые турбины, сжигают различные виды топлива и используют давление, создаваемое путем расширения газов, чтобы выполнять механическую работу. Аккумуляторы преобразовывают химическую энергию в электрическую энергию, когда это необходимо. Топливные элементы должны выполнять эти задачи более эффективно.

Топливный элемент обеспечивает напряжение DC (постоянный ток), который может быть использован для питания электродвигателей, освещения и других электроприборов.

Существует несколько различных типов топливных элементов, каждый из которых использует различные химические процессы. Топливные элементы обычно классифицируются по их рабочей температуре и типу электролита, который они используют. Некоторые типы топливных элементов, хорошо годятся для использования в стационарных электростанциях. Другие могут быть полезными для небольших портативных устройств или для питания автомобилей. Основные типы топливных элементов включают в себя:

Топливный элемент с полимерной мембраной обмена Polymer exchange membrane fuel cell (PEMFC)

PEMFC рассматривается в качестве наиболее вероятного кандидата для применения на транспорте. PEMFC имеет как высокую мощность, так и относительно низкую рабочую температуру (в диапазоне от 60 до 80 градусов по Цельсию). Низкая рабочая температура означает, топливные элементы быстро смогут разогреться, чтобы начать генерацию электроэнергии.

Твердооксидные топливные элементы Solid oxide fuel cell (SOFC)

Эти топливные элементы наиболее подходят для крупных стационарных генераторов энергии, которые могли бы обеспечить электроэнергией фабрики или города. Этот тип топливных элементов работает при очень высоких температурах (от 700 до 1000 градусов по Цельсию). Высокая температура составляет проблему надежности, потому что часть топливных элементов может выйти из строя после нескольких циклов включения и выключения. Однако, твердооксидные топливные элементы являются очень стабильными при непрерывной работе. В самом деле, SOFC продемонстрировали самый длинный срок эксплуатации любых топливных элементов при определенных условиях. Высокая температура также имеет преимущество: пар, вырабатываемый топливными элементами, может быть направлен в турбины и генерировать больше электроэнергии. Этот процесс называется когенерацией тепла и электроэнергии и повышает общую эффективность системы.

Щелочной топливный элемент Alkaline fuel cell (AFC)

Это один из древнейших образцов для топливных элементов, используемый с 1960-х годов. AFC являются очень восприимчивыми к загрязнению, так как требуют чистый водород и кислород. Кроме того, они очень дороги, поэтому этот тип топливных элементов, вряд ли будет запущен в серийное производство.

Топливный элемент с расплавленным карбонатным электролитом Molten-carbonate fuel cell (MCFC)

Как SOFC, эти топливные элементы также лучше всего подходят для больших стационарных электростанций и генераторов. Они работают при 600 градусов по Цельсию, так что могут генерировать пар, который, в свою очередь, может быть использован, чтобы генерировать еще больше энергии. Они имеют более низкую рабочую температуру, чем твердооксидные топливные элементы, что означает, что они не нуждаются в таких термоустойчивых материалах. Это делает их немного дешевле.

Топливный элемент на фосфорной кислоте Phosphoric-acid fuel cell (PAFC)

Топливный элемент на фосфорной кислоте имеет потенциал для использования в небольших стационарных энергетических системах. Он работает на более высокой температуре, чем топливный элемент с полимерной мембраной обмена, поэтому он дольше разогревается, что делает его непригодным для использования в автомобилях.

Метаноловые топливные элементы Direct methanol fuel cell (DMFC)

Метаноловые топливные элементы сравнимы с PEMFC в отношении рабочей температуры, но не так эффективны. Кроме того, DMFC требуют довольно большого количества платины, выступающей в качестве катализатора, который делает эти топливные элементы дорогими.

Топливный элемент с полимерной мембраной обмена

Топливный элемент с полимерной мембраной обмена (PEMFC) является одной из наиболее перспективных технологий топливных элементов. PEMFC использует одну из простейших реакций среди любых топливных элементов. Рассмотрим, из чего он состоит.

1. Анод – негативная клемма топливного элемента. Он проводит электроны, которые высвобождаются из молекул водорода, после чего они могут быть использованы во внешней цепи. В нем выгравированы каналы, по которым газообразный водород распределяется равномерно по поверхности катализатора.

2. Катод — позитивная клемма топливного элемента, также имеет каналы для распределения кислорода по поверхности катализатора. Он также проводит электроны обратно из внешней цепи катализатора, где они могут соединиться с ионами водорода и кислорода с образованием воды.

3. Электролит-протонообменная мембрана . Это специально обработанный материал, который проводит только положительно заряженные ионы и блокирует электроны. У PEMFC, мембрана должна быть увлажненной, чтобы нормально функционировать и оставаться стабильной.

4. Катализатор — это специальный материал, который способствует реакции кислорода и водорода. Обычно он изготавливается из наночастиц платины, очень тонко нанесенных на копировальную бумагу или ткань. Катализатор имеет такую структуру поверхности, чтобы максимальная площадь поверхности платины могла быть подвержена воздействию водорода или кислорода.

На рисунке показан газообразный водород (H2), входящий под давлением в топливный элемент со стороны анода. Когда молекула H2 соприкасается с платиной на катализаторе, она разделяется на два H+ иона и два электрона. Электроны проходят через анод, где они используются во внешней схеме (выполнение полезной работы, например, вращение двигателя) и возвращаются к стороне катода топливного элемента.

Между тем, на стороне катода топливного элемента, кислород (O2) из воздуха проходит через катализатор, где формирует два атома кислорода. У каждого из этих атомов есть сильный отрицательный заряд. Этот отрицательный заряд привлекает два H+ иона через мембрану, где они объединяются с атомом кислорода и двумя электронами, пришедшими из внешней схемы, чтобы сформировать молекулу воды (H2O).

Эта реакция в одиночном топливном элементе производит только приблизительно 0,7 Вольт. Чтобы повысить напряжение до разумного уровня, много отдельных топливных элементов должны быть объединены, чтобы сформировать стек топливного элемента. Биполярные пластины используются для соединения одного топливного элемента с другим и подвергаются окислению с уменьшением потенциала. Большая проблема биполярных пластин – их стабильность. Металлические биполярные пластины могут разъедаться коррозией, и побочные продукты (железо и ионы хрома) уменьшают эффективность мембран топливного элемента и электродов. Поэтому низкотемпературные топливные элементы используют легкие металлы, графит и композитные соединения углерода и термореактивного материала (термореактивный материал — своего рода пластмасса, которая остается твердой, даже когда подвергается высоким температурам) в виде биполярного листового материала.

Эффективность топливного элемента

Сокращение загрязнения — одна из основных целей топливного элемента. Сравнивая автомобиль, приведенный в действие топливным элементом с автомобилем, приведенным в действие бензиновым двигателем и автомобилем, работающим от аккумулятора, вы увидите, как топливные элементы могли бы повысить эффективность автомобилей.

Так как у всех трех типов автомобилей есть многие одни и те же самые компоненты, мы проигнорируем эту часть автомобиля и сравним полезные действия до пункта, где производится механическая энергия. Давайте начнем с автомобиля на топливных элементах.

Если топливный элемент приведен в действие чистым водородом, его КПД может составить до 80 процентов. Таким образом, он преобразовывает 80 процентов энергетического содержания водорода в электроэнергию. Однако мы еще должны преобразовать электроэнергию в механическую работу. Это достигается электродвигателем и инвертором. КПД двигателя + инвертора также составляет приблизительно 80 процентов. Это дает полную эффективность приблизительно 80*80/100=64 процентов. У концептуального транспортного средства Хонды FCX по сообщениям есть 60-процентная эффективность использования энергии.

Если топливный источник не будет в виде чистого водорода, то транспортное средство будет также нуждаться в риформаторе. Риформаторы превращают углеводородные или спиртовые топлива в водород. Они вырабатывают тепло и производят CO и CO2 помимо водорода. Для очистки полученного водорода в них используются различные устройства, но эта очистка недостаточна и понижает эффективность топливного элемента. Поэтому исследователи решили сконцентрироваться на топливных элементах для транспортных средств, работающих на чистом водороде, несмотря на проблемы, связанные с производством и хранением водорода.

Эффективность бензинового двигателя и автомобиля на электрических батареях

Эффективность автомобиля, приведенного в действие бензином — удивительно низкая. Вся высокая температура, которая выходит в виде выхлопа или поглощается радиатором, является потраченной впустую энергией. Двигатель также использует много энергии, вращающей различные насосы, вентиляторы и генераторы, которые поддерживают его работу. Таким образом, полная эффективность автомобильного бензинового двигателя составляет приблизительно 20 процентов. Таким образом, только приблизительно 20 процентов содержания тепловой энергии бензина преобразуются в механическую работу.

У работающего от аккумулятора электромобиля есть довольно высокая эффективность. Батарея имеет КПД, приблизительно, 90 процентов (большинство батарей вырабатывает некоторое тепло или требует нагревания), и электродвигатель + инвертор с КПД, приблизительно 80 процентов. Это дает полную эффективность, приблизительно, 72 процента.

Но это не все. Для того, чтобы электромобиль двигался, электричество должно быть сначала где-нибудь произведено. Если это была электростанция, которая использовала процесс сгорания ископаемого топлива (а не ядерную, гидроэлектрическую, солнечную или ветровую энергию), то только приблизительно 40 процентов топлива, потребленного электростанцией, были преобразованы в электричество. Плюс, процесс зарядки автомобиля требует преобразования мощности переменного тока (AC) к мощности постоянного тока (DC). У этого процесса КПД приблизительно 90 процентов.

Теперь, если мы смотрим на целый цикл, эффективность электромобиля составляет 72 процента для самого автомобиля, 40 процентов для электростанции и 90 процентов для зарядки автомобиля. Это дает полную эффективность 26 процентов. Полная эффективность значительно варьируется в зависимости от того, какая электростанция используется для зарядки аккумулятора. Если электричество для автомобиля произведено, например, гидроэлектростанцией, то эффективность электромобиля составит приблизительно 65 процентов.

Ученые исследуют и совершенствуют проекты, чтобы продолжать повышать эффективность топливного элемента. Один из новых подходов должен объединить топливный элемент и работающие от аккумулятора транспортные средства. Разрабатывается концептуальное транспортное средство, приводимое в действие гибридной трансмиссией с подпиткой от топливного элемента. Оно использует литиевую батарею, приводящую автомобиль в действие, в то время как топливный элемент перезаряжает батарею.

Транспортные средства на топливных элементах потенциально так же эффективны как работающий от аккумулятора автомобиль, который заряжается от электростанции, не использующей ископаемое топливо. Но достижение такого потенциала практическим и доступным способом может оказаться трудным.

Зачем нужно использовать топливные элементы?

Основной причиной является все, что связано с нефтью. Америка должна импортировать почти 60 процентов своей нефти. К 2025 г. импорт, как ожидается, вырастет до 68%. Две трети нефти американцы используют ежедневно для перевозок. Даже если каждый автомобиль на улице был бы гибридным автомобилем, к 2025 году в США все равно пришлось бы использовать то же количество нефти, которое потреблялось американцами в 2000 году. В самом деле, Америка потребляет четверть всей нефти, добываемой в мире, хотя только 4,6% мирового населения живет здесь.

Эксперты ожидают, что цены на нефть продолжат расти в течение следующих нескольких десятилетий, так как более дешевые источники истощаются. Нефтяные компании должны разрабатывать нефтяные месторождения во все более сложных условиях, отчего будут повышать цены на нефть.

Опасения простираются далеко за пределы экономической безопасности. Много средств, поступающих от продажи нефти, расходуются на поддержание международного терроризма, радикальных политических партий, нестабильной обстановки в нефтедобывающих регионах.

Использование нефти и других видов ископаемого топлива для получения энергии производит загрязнение. Оно наилучшим образом подходит для всех найти альтернативу-сжигание ископаемого топлива для получения энергии.

Топливные элементы являются привлекательной альтернативой нефтяной зависимости. Топливные элементы вместо загрязнения производят чистую воду в качестве побочного продукта. Хотя инженеры временно сосредоточились на производстве водорода из различных ископаемых источников, таких как бензин или природный газ, изучаются возобновляемые, экологически чистые способы получения водорода в будущем. Самым перспективным, естественно, станет процесс получения водорода из воды

Зависимость от нефти и глобальное потепление — международная проблема. Несколько стран совместно участвуют в развитии исследований и разработок для технологии топливных элементов.

Очевидно, что ученые и производители должны немало потрудиться, прежде чем топливные элементы станут альтернативой современным методам производства энергии. И все же, при поддержке всего мира и глобальном сотрудничестве, жизнеспособная энергетическая система на базе топливных элементов может стать реальностью уже через пару десятилетий.

Топливные элементы (электрохимические генераторы) представляют весьма эффективный, долговечный, надежный и экологически чистый метод получения энергии. Изначально их применяли лишь в космической отрасли, но сегодня электрохимические генераторы все активней применяются в различных областях: это источники питания мобильников и ноутбуков, двигатели транспортных средств, автономные источники электроснабжения зданий, стационарные электростанции. Часть этих устройств работает в качестве лабораторных прототипов, часть применяется в демонстрационных целях или проходит предсерийные испытания. Однако многие модели уже применяются в коммерческих проектах и выпускаются серийно.

Устройство

Топливные элементы представляют электрохимические устройства, способные обеспечивать высокий коэффициент преобразования существующей химической энергии в электрическую.

Устройство топливного элемента включает три основные части:

  1. Секция выработки энергии;
  2. Процессор;
  3. Преобразователь напряжения.

Основной частью топливного элемента является секция выработки энергии, которая представляет батарею, выполненную из отдельных топливных ячеек. В структуру электродов топливных ячеек включен платиновый катализатор. При помощи этих ячеек создается постоянный электрический ток.

Одно из таких устройств имеет следующие характеристики: при напряжении 155 вольт выдается 1400 ампер. Размеры батареи составляют 0,9 м в ширину и высоту, а также 2,9 м в длину. Электрохимический процесс в нем осуществляется при температуре 177 °C, что требует нагревания батареи в момент пуска, а также отвода тепла при ее эксплуатации. С этой целью в состав топливного элемента включается отдельный водяной контур, в том числе батарея оснащается специальными охлаждающими пластинами.

В топливном процессе происходит преобразование природного газа в водород, который требуется для электрохимической реакции. Главным элементом топливного процессора является реформер. В нем природный газ (или иное водородсодержащее топливо) взаимодействует при высоком давлении и высокой температуре (порядка 900 °C) с водяным паром при действии катализатора — никеля.

Для поддержания необходимой температуры реформера имеется горелка. Пар, который требуется для реформинга, создается из конденсата. В батарее топливных ячеек создается неустойчивый постоянный ток, для его преобразования применяется преобразователь напряжения.

Также в блоке преобразователя напряжения имеются:

  • Управляющие устройства.
  • Схемы защитной блокировки, которые отключают топливный элемент при различных сбоях.

Принцип действия

Простейший элемент с протонообменной мембраной состоит из полимерной мембраны, которая находится между анодом и катодом, а также катодными и анодными катализаторами. Полимерная мембрана применяется в качестве электролита.

  • Протонообменная мембрана выглядит как тонкое твердое органическое соединение небольшой толщины. Данная мембрана работает как электролит, она в присутствии воды разделяет вещество на отрицательно, а также положительно заряженные ионы.
  • На аноде начинается окисление, а на катоде происходит восстановительный. Катод и анод в PEM-элементе выполнены из пористого материала, он представляет смесь частичек платины и углерода. Платина работает в роли катализатора, что способствует протеканию реакции диссоциации. Катод и анод выполнены пористыми, чтобы кислород и водород сквозь них свободно проходили.
  • Анод и катод находятся между двумя металлическими пластинами, они подводят кислород и водород к катоду и аноду, а отводят электрическую энергию, тепло и воду.
  • Сквозь каналы в пластине молекулы водорода поступают на анод, где осуществляется разложение молекул на атомы.
  • В результате хемосорбции при воздействии катализатора атомы водорода преобразуются в положительно заряженные водородные ионы H+, то есть протоны.
  • Протоны диффундируют к катоду через мембрану, а поток электронов идет к катоду через специальную внешнюю электрическую цепь. К ней подключена нагрузка, то есть потребитель электрической энергии.
  • Кислород, который подается на катод, при воздействии вступает в химическую реакцию с электронами из наружной электрической цепи и ионами водорода из протонообменной мембраны. В результате данной химической реакции появляется вода.

Химическая реакция, происходящая в топливных элементах иных типов (к примеру, с кислотным электролитом в виде ортофосфорной кислоты H3PO4) полностью идентична реакции устройства с протонообменной мембраной.

Виды

На текущий момент известно несколько видов топливных элементов, которые различаются составом применяемого электролита:

  • Топливные элементы на базе ортофосфорной или фосфорной кислоты (PAFC, Phosphoric Acid Fuel Cells).
  • Устройства с протонообменной мембраной (PEMFC, Proton Exchange Membrane Fuel Cells).
  • Твердотельные оксидные топливные элементы (SOFC, Solid Oxide Fuel Cells).
  • Электрохимические генераторы на базе расплавленного карбоната (MCFC, Molten Carbonate Fuel Cells).

На текущий момент большее распространение получили электрохимические генераторы, использующие технологию PAFC.

Применение

Сегодня топливные элементы используются в «Space Shuttle», космических кораблях многоразового использования. В них применяются установки мощностью 12 Вт. Они вырабатывают всю электроэнергию на космическом корабле. Вода, которая образуется при электрохимической реакции, применяется для питья, в том числе для охлаждения оборудования.

Электрохимические генераторы также применялись для энергоснабжения советского «Бурана», корабля многоразового использования.

Топливные элементы находят применение и в гражданской сфере.

  • Стационарные установки мощностью 5–250 кВт и выше. Они находят применение в качестве автономных источников для тепло- и электроснабжения промышленных, общественных и жилых зданий, аварийных и резервных источников электроснабжения, источников бесперебойного питания.
  • Портативные установки мощностью 1–50 кВт. Они применяются для космических спутников и кораблей. Создаются экземпляры для тележек для гольфа, инвалидных колясок, железнодорожных и грузовых рефрижераторов, дорожных указателей.
  • Мобильные установки мощностью 25–150 кВт. Они начинают применяются в военных кораблях и субмаринах, в том числе автомобилях и иных транспортных средствах. Опытные образцы уже создали такие автомобильные гиганты, как «Renault», «Neoplan», «Toyota», «Volkswagen», «Hyundai», «Nissan», ВАЗ, «General Motors», «Honda», «Ford» и другие.
  • Микроустройства мощностью 1–500 Вт. Они находят применение в опытных карманных компьютерах, ноутбуках, бытовых электронных устройствах, мобильниках, современных военных приборах.

Особенности

  • Часть энергии химической реакции в каждом топливном элементе выделяется в виде тепла. Требуется охлаждение. Во внешней цепи поток электронов создает постоянный ток, используемый для совершения работы. Прекращение движения ионов водорода или размыкание внешней цепи приводит к остановке химической реакции.
  • Количество электроэнергии, которую создают топливные элементы, определяется давлением газа, температурой, геометрическими размерами, видом топливного элемента. Для повышения количества электроэнергии, создаваемой реакцией, можно сделать размеры топливных элементов больше, но на практике применяют несколько элементов, которые объединяются в батареи.
  • Химический процесс в некоторых видах топливных элементов может быть обратным. То есть при подаче разности потенциалов на электроды воду можно разложить на кислород и водород, которые будут собираться на пористых электродах. С включением нагрузки подобный топливный элемент будет вырабатывать электрическую энергию.

Перспективы

На текущий момент электрохимические генераторы для использования в качестве главного источника энергии нуждаются в больших первоначальных затратах. При внедрении более стабильных мембран с высокой проводимостью, эффективных и дешевых катализаторов, альтернативных источников водорода, топливные элементы приобретут высокую экономическую привлекательность и будут внедряться повсеместно.

  • Автомобили будут работать на топливных элементах, ДВС в них вообще не будет. В качестве источника энергии будет применяться вода или твердотельный водород. Заправка будет простой и безопасной, а езда экологичной – будет вырабатываться только водяной пар.
  • Все здания будут иметь собственные портативные энергогенераторы, выполненные на топливных элементах.
  • Электрохимические генераторы заменят все аккумуляторы и будут стоять в любой электронике и бытовых приборах.

Достоинства и недостатки

У каждого вида топливного элемента свои недостатки и достоинства. Одни требуют высокого качество топлива, другие имеют сложную конструкцию, нуждаются в высокой рабочей температуре.

В целом же можно указать следующие достоинства топливных элементов:

  • безопасность для окружающей среды;
  • электрохимические генераторы не нужно перезаряжать;
  • электрохимические генераторы могут создавать энергию постоянно, им не важны внешние условия;
  • гибкость в плане масштаба и портативность.

Среди недостатков можно выделить:

  • технические трудности с хранением и транспортом топлива;
  • несовершенные элементы устройства: катализаторы, мембраны и так далее.

ТОПЛИВНЫЙ ЭЛЕМЕНТ
электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.
См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ .
Принцип действия. Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:


Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH-) с образованием воды и электрона:

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H-). Результирующую реакцию на катоде можно записать в виде:

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента. Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен - приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме. Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.
Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.
Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.



Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре. Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо "расщепляется" внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.
Коэффициент полезного действия. Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, - процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА ; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40-45%.
Применения. Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями. Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей "Аполлон" применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля. Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ .
ЛИТЕРАТУРА
Багоцкий В.С., Скундин А.М. Химические источники тока. М., 1981 Кромптон Т. Источники тока. М., 1985, 1986

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ТОПЛИВНЫЙ ЭЛЕМЕНТ" в других словарях:

    ТОПЛИВНЫЙ ЭЛЕМЕНТ, ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ для непосредственного превращения энергии окисления топлива в электрическую энергию. Соответственно сконструированные электроды погружаются в ЭЛЕКТРОЛИТ, и топливо (например, водород) подается к одному … Научно-технический энциклопедический словарь

    Гальванический элемент, в котором окислительно восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть… … Большой Энциклопедический словарь

    топливный элемент - Первичный элемент, в котором электрическая энергия вырабатывается за счет электрохимических реакций между активными веществами, непрерывно поступающими к электродам извне. [ГОСТ 15596 82] EN fuel cell cell that can change chemical energy from… … Справочник технического переводчика

    Прямой метанольный топливный элемент Топливный элемент электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него … Википедия

Сэр Уильям Грове знал много об электролизе, поэтому он выдвинул гипотезу, что путем процесса (который расщепляет воду на составляющие водород и кислород путем проведения электричества через нее) он может производить , если провести его в обратном порядке. После расчётов на бумаге, он подошел к экспериментальной стадии и сумел доказать свои идеи. Доказанную гипотезу развили ученые Людвиг Монд и его помощник Чарльз Лангре, усовершенствовали технологию и еще в 1889 году дали ей название в которые входили два слова- "топливный элемент".

Сейчас это словосочетание крепко вошло в обиход автомобилистов. Вы безусловно слышали этот термин «топливный элемент» и не единожды. В новостях в интернете, по телевизору все чаще мелькают новомодные слова. Обычно они относятся к рассказам о новейших гибридных автомобилях или программах развития этих гибридных автомобилей.

Например, еще 11 лет назад в США была запущена программа "The Hydrogen Fuel Initiative". Программа была направлена ​​на разработку водородных топливных элементов и технологий инфраструктуры, необходимых для того, чтобы сделать транспортные средства использующие топливные элементы практичными и экономически продуманными, рентабельными к 2020 году. Кстати, за это время на программу было выделено более 1 млрд. долларов, что говорит о серьезной ставке, которую сделали власти Штатов на .

По другую сторону океана производители автомобилей также не дремали, начинали или продолжали проводить свои изыскания на тему машин с топливными элементами. , и даже продолжал работать над созданием надежной технологии топливных элементов.

Наибольшего успеха на данном поприще среди всех мировых автопроизводителей добились две японских автопроизводителя, и . Их модели на топливных элементах уже пошли в серийное производство, в тоже время их конкуренты следует прямо за ними.

Поэтому, топливные элементы в автомобильной индустрии- это надолго. Рассмотрим принципы работы технологии и ее применение в современных автомобилях.

Принцип работы топливного элемента


В сущности, . С технической точки зрения определить топливный элемент можно как электрохимическое устройство для преобразования энергии. Он преобразует частицы водорода и кислорода в воду, в процессе попутно производя электричество, постоянный ток.

Существует множество типов топливных элементов, некоторые из них уже используются в автомобилях, другие проходят исследовательские тесты. В большинстве из них используется водород и кислород в качестве основных химических элементов необходимых для преобразования.

Аналогичная процедура происходит в обычной батарее, отличие только в том, что уже имеет все необходимые химические вещества, требуемые для преобразования "на борту", в то время как топливный элемент может быть "заряжаться" от внешнего источника, благодаря чему процесс «производства» электричества может быть продолжен. Помимо водяного пара и электричества, другим побочным продуктом процедуры является выделяемое тепло.


Водородно-кислородный топливный элемент с протонообменной мембраной содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

wikipedia.org

Применение в автомобилях

Из всех типов топливных элементов, по- видимому наилучшим кандидатом для применения в транспортных средствах стали топливные элементы на основе протонообменных мембран или как их называют на западе- Polymer Exchange Membrane Fuel Cell (PEMFC). Основными причинами этого являются его высокая удельная мощность и относительно низкая рабочая температура, а это в свою очередь означает, что у него не потребуется много времени для того чтобы привести топливные элементы в рабочий режим. Они оперативно разогреются и начнут производить необходимое количество электроэнергии. В ее основе используется также одна из самых простых реакций из всех типов топливных элементов.

Первое транспортное средство с этой технологией было сделано еще в 1994 году, когда Mercedes-Benz представил MB100 созданный на основе NECAR1 (новый электрический автомобиль 1). Помимо малой выходной мощности (всего 50 киловатт), самый большой недостаток этой концепции заключалась в том, что топливный элемент занимал весь объем грузового отсека фургона.


Кроме того, с точки зрения пассивной безопасности, это была ужасная идея для массового производства, принимая во внимание необходимость установки на борту массивного резервуара, заполненного легковоспламеняющимся водородом под давлением.

В течение следующего десятилетия технология развивалась и одна из последних концепций, созданных на топливных элементах от Мерседес имел выходную мощность 115 л.с. (85 квт) и диапазон действия около 400 километров перед дозаправкой. Конечно, немцы были не единственными пионерами в разработке топливных элементов будущего. Не забывайте про двух японцев, Toyota и . Одним из крупнейших автомобильных игроков стала Honda, который представил серийный автомобиль с силовой установкой на водородных топливных элементах. Продажи FCX Clarity в лизинг на территории США начались летом 2008 года, чуть позже реализация автомобиля перешла в Японию.

Еще дальше пошла Toyota с моделью Mirai, чья прогрессивная система топливных элементов, работающая на водороде, по- видимому способна предоставить футуристичному автомобилю диапазон действия в 520 км на одном баке, который может быть заправляемого менее чем за пять минут, так же как обычный . Показатели расхода топлива поразят любого скептика, они невероятны даже для автомобиля с классической силовой установкой расходует 3.5 литра независимо от того в каких условиях используется автомобиль, в городе, на шоссе или в смешанном цикле.

Прошло восемь лет. Honda потратила это время с пользой для своего дела. Второе поколение Honda FCX Clarity сейчас появляется в продаже. Ее батареи топливных элементов стали на 33% более компактными, чем у первой модели, удельная мощность увеличилась на 60%. Honda уверяет, что топливный элемент и интегрированный силовой агрегат в Clarity Fuel Cell по размерам сравним с двигателем V6, что оставляет достаточно внутреннего пространства для пяти пассажиров и их багажа.


Предполагаемый диапазон составляет 500 км, а стартовая цена новинки должна закрепиться на уровне в $60,000. Дорого? Наоборот, очень даже дешево. В начале 2000 автомобили с подобными технологиями стоили $100.000.