Системы впрыска бензиновых двигателей. Топливные системы впрыска: различие и принципы работы

Д.Соснин

Начинаем публикацию статей по современным системам впрыска топлива для бензиновых двигателей внутреннего сгорания легковых автомобилей.

1. Предварительные замечания

Топливное питание бензиновых двигателей на современных легковых автомобилях реализуется с применением систем впрыска. Эти системы по принципу действия принято подразделять на пять основных групп (рис. 1): K, Mono, L, M, D.

2. Преимущества систем впрыска

Топливовоздушная смесь (ТВ-смесь) подается от карбюратора к цилиндрам двигателя внутреннего сгорания (ДВС) по длинным трубам впускного коллектора. Длина этих труб к различным цилиндрам двигателя неодинакова, а в самом коллекторе имеет место неравномерность нагрева стенок, даже на полностью прогретом двигателе (рис. 2).


Это приводит к тому, что из однородной ТВ-смеси, созданной в карбюраторе, в разных цилиндрах ДВС образуются неодинаковые топливовоздушные заряды. Как следствие, двигатель не отдает расчетную мощность, теряется равномерность крутящего момента, расход топлива и количество вредных веществ в выхлопных газах увеличиваются.

Бороться с этим явлением в карбюраторных двигателях очень сложно. Следует также отметить, что современный карбюратор работает на принципе пульверизации, при которой распыление бензина происходит в струе всасываемого в цилиндры воздуха. При этом образуются достаточно крупные капли топлива (рис. 3, а),

Что не обеспечивает качественного перемешивания бензина и воздуха. Плохое перемешивание и крупные капли облегчают оседание бензина на стенках впускного коллектора и на стенках цилиндров во время всасывания ТВ-смеси. Но при принудительном распылении бензина под давлением через калиброванное сопло форсунки частицы топлива могут иметь значительно меньшие размеры по сравнению с распылением бензина при пульверизации (рис. 3, б). Особенно эффективно бензин распыляется узким пучком под высоким давлением (рис. 3, в).

Установлено, что при распылении бензина на частицы диаметром менее 15...20 мкм его перемешивание с кислородом воздуха происходит не как взвешивание частиц, а на молекулярном уровне. Это делает ТВ- смесь более устойчивой к воздействию перепадов температуры и давления в цилиндре и длинных трубах впускного коллектора, что способствует более полному ее сгоранию.

Так родилась идея заменить пульверизационные жиклеры механического инерционного карбюратора на центральную безынерционную форсунку впрыска (ЦФВ), открывающуюся на заданное время по электроимпульсному сигналу управления от блока электронной автоматики. При этом, помимо качественного распыления и эффективного перемешивания бензина с воздухом, легко получать более высокую точность их дозирования в ТВ-смеси на всех возможных режимах работы ДВС.

Таким образом, за счет применения системы топливного питания с впрыском бензина двигатели современных легковых автомобилей не имеют вышеуказанных недостатков, присущих карбюраторным двигателям, т.е. они более экономичны, обладают более высокой удельной мощностью, поддерживают постоянство крутящего момента в широком интервале частот вращения, а выброс вредных веществ в атмосферу с отработавшими газами минимален.

3. Система впрыска бензина "Mono-Jetronic"

Впервые система центрального одноточечного импульсного впрыска топлива для бензиновых двигателей легковых автомобилей была разработана фирмой BOSCH в 1975 году. Эта система получила название "Mono-Jetronic" (Monojet - одиночная струя) и была установлена на автомобиле "Volkswagen".

На рис. 4 показан центральный впрыскивающий узел системы "Mono-Jetronic". Из рисунка видно, что центральная форсунка впрыска (ЦФВ) устанавливается на стандартном впускном коллекторе вместо обычного карбюратора.

Но в отличие от карбюратора, в котором автоматика смесеобразования реализуется механическим управлением, в моносистеме впрыска применяется чисто электронное управление.

На рис. 5 показана упрощенная функциональная схема системы "Mono-Jetronic".

Электронный блок управления (ЭБУ) работает от входных датчиков 1-7, которые фиксируют текущее состояние и режим работы двигателя. По совокупности сигналов от этих датчиков и с использованием информации из трехмерной характеристики впрыска в ЭБУ вычисляются начало и продолжительность открытого состояния центральной форсунки 15.

На основании расчетных данных в ЭБУ формируется электроимпульсный сигнал S управления для ЦФВ. Этот сигнал воздействует на обмотку 8 магнитного соленоида форсунки, запорный клапан 11 которой открывается, и через распылительное сопло 12 бензин принудительно под давлением 1,1 бар в топливоподающей магистрали 19 распыляется во впускной коллектор через открытую дроссельную заслонку 14.

При заданных размерах диафрагмы дроссельной заслонки и калиброванного сечения распылительного сопла массовое количество пропущенного в цилиндры воздуха определяется степенью открытия дроссельной заслонки, а массовое количество впрыснутого в воздушный поток бензина - продолжительностью открытого состояния форсунки и подпорным (рабочим) давлением в топливоподающей магистрали 19.

Для того чтобы бензин сгорал полностью и наиболее эффективно, массы бензина и воздуха в ТВ-смеси должны находиться в строго определенном соотношении, равном 1/14,7 (для высокооктановых сортов бензина). Такое соотношение называется стехиометрическим, и ему соответствует коэффициент а избытка воздуха, равный единице. Коэффициент а = Мд/М0, где М0 - количество массы воздуха, теоретически необходимой для полного сгорания данной порции бензина, а Мд- масса фактически выгоревшего воздуха.

Отсюда ясно, что в любой системе впрыска топлива обязательно должен иметься измеритель массы воздуха, впущенного в цилиндры двигателя при всасывании.

В системе "Mono-Jetronic" масса воздуха рассчитывается в ЭБУ по показаниям двух датчиков (см. рис. 4): температуры всасываемого воздуха (ДТВ) и положения дроссельной заслонки (ДПД). Пер вый расположен непосредственно на пути воздушного потока в верхней части центральной форсунки впрыска и представляет собой миниатюрный полупроводниковый термистор, а второй является резистивным потенциометром, движок которого насажен на поворотную ось (ПДЗ) дроссельной заслонки.

Так как конкретному угловому положению дроссельной заслонки соответствует строго определенное объемное количество пропущенного воздуха, то дроссельный потенциометр выполняет функцию расходомера воздуха. В системе "Mono-Jetronic" он является также датчиком нагрузки двигателя.

Но масса всасываемого воздуха в значительной степени зависит от температуры. Холодный воздух более плотный, а значит более тяжелый. По мере повышения температуры плотность воздуха и его масса уменьшаются. Влияние температуры учитывается датчиком ДТВ.

Датчик ДТВ температуры всасываемого воздуха, как полупровод никовый термистор с отрицательным температурным коэффициентом сопротивления, изменяет величину резистивности от 10 до 2,5 кОм при изменении температуры от -30 до +20°С. Сигнал датчика ДТВ используется только в таком температурном диапазоне. При этом базовая продолжительность впрыска бензина корректируется с помощью ЭБУ в интервале 20...0%. Если температура всасываемого воздуха выше +20°С, то сигнал датчика ДТВ блокируется в ЭБУ и датчик не используется.

Сигналы от датчиков положения дроссельной заслонки (ДПД) и температуры всасываемого воздуха (ДТВ) в случаях их отказов дублируются в ЭБУ сигналами датчиков частоты вращения (ДОД) и температуры охлаждающей жидкости (ДТД) двигателя.

По рассчитанному в ЭБУ объему воздуха, а также по сигналу о частоте вращения двигателя, который поступает от датчика числа оборотов системы зажигания, определяется требуемая (базовая) продолжительность открытого состояния центральной форсунки впрыска.

Так как подпорное давление Рт в топливоподающей магистрали (ПБМ) постоянно (для "Mono-Jetronic" Рт = 1...1,1 бар), а пропускная способность форсунки задана суммарным сечением отверстий распылительного сопла, то время открытого состояния форсунки однозначно определяет количество впрыснутого бензина. Момент впрыска (на рис. 5 сигнал от датчика ДМВ) обычно задается одновременно с сигналом на воспламенение ТВ-смеси от системы зажигания (через 180° поворота коленвала ДВС).

Таким образом, при электронном управлении процессом смесеобразования обеспечение высокой точности дозировки впрыскиваемого бензина в измеренное количество массы воздуха является легко решаемой задачей и, в конечном счете, точность дозирования определяется не электронной автоматикой, а точностью изготовления и функцио нальной надежностью входных датчиков и форсунки впрыска.

На рис. 6 показана главная деталь системы "Mono-Jetronic" - центральная форсунка впрыска (ЦФВ).


Центральная форсунка впрыска представляет собой бензоклапан, который открывается электрическим импульсом, поступающим от электронного блока управления. Для этого в форсунке имеется электромагнитный соленоид 8 с подвижным магнитным керном 14. Основной проблемой при создании клапанов для импульсного впрыска является необходимость обеспечения высокой скорости срабатывания запорного устройства 9 клапана как на открывание, так и на закрытие. Решение проблемы достигается облегчением магнитного керна соленоида, увеличением тока в импульсном сигнале управления, подбором упругости возвратной пружины 13, а также формой притертых поверхностей для распылительного сопла 10.

Сопло форсунки (рис. 6, а) выполнено в виде раструба капиллярных канальцев, число которых обычно не менее шести. Углом при вершине раструба задается раскрыв струи впрыска, которая имеет форму воронки. При такой форме струя бензина не попадает на дроссельную заслонку даже при малом ее открытии, а пролетает в два тонких полумесяца открывшейся щели.

Центральная форсунка системы "Mono-Jetronic" надежно обеспечивает минимальную продолжительность открытого состояния распылитель ного сопла 11 в течение 1±0,1 мс. За такое время и при рабочем давлении в 1 бар через распылительное сопло площадью в 0,08 мм2 впрыскивается около одного миллиграмма бензина. Этому соответствует расход топлива 4 л/ч на минимальных холостых оборотах (600 об/мин) прогретого двигателя. При пуске и прогреве холодного двигателя форсунка открывается на более продолжительное время (до 5...7 мс). Но с другой стороны максимальная продолжительность впрыска на прогретом двигателе (время открытого состояния форсунки) ограничивается предельной частотой вращения коленвала ДВС (6500...7000 мин-1) в режиме полного дросселя и не может быть более 4 мс. При этом тактовая частота срабатывания запорного устройства форсунки на холостом ходу не менее 20 Гц, а при полной нагрузке - не более 200...230 Гц.

С особой тщательностью изготавливается датчик ДПД положения дроссельной заслонки (дроссельный потенциометр), показанный на рис. 7. Его чувствительность к повороту движка должна отвечать требованию ±0,5 угловых градусов поворота оси 13 дросселя. По строгому угловому положению оси дросселя определяются начала двух режимов работы двигателя: режима холостого хода (3±0,5°) и режима полной нагрузки (72,5±0,5°).

Для обеспечения высокой точности и надежности резистивные дорожки потенциометра, которых четыре, включены по схеме, показанной на рис. 7, б, а ось движка потенциометра (движок двухконтактный) посажена в безлюфтовый тефлоновый подшипник скольжения.

Потенциометр и ЭБУ соединены между собой четырехпроводным кабелем через контактный разъем. Для повышения надежности соединений контакты в разъеме и в фишке потенциометра позолочены. Контакты 1 и 5 предназначены для подачи опорного напряжения 5±0,01 В. Контакты 1 и 2 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 0 до 24° (0...30 - режим холостого хода; 3...24° - режим малых нагрузок двигателя). Контакты 1 и 4 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 18 до 90° (18...72,5° - режим средних нагрузок, 72,5...90° - режим полной нагрузки двигателя).

Сигнальное напряжение с дроссельного потенциометра дополнительно используется:
для обогащения ТВ-смеси при разгоне автомобиля (регистрируется быстрота изменения сигнала от потенциометра);
для обогащения ТВ-смеси в режиме полной нагрузки (регистрируется значение сигнала с потенциометра после 72,5° поворота дроссельной заслонки в сторону увеличения);
для прекращения впрыска топлива в режиме принудительного холостого хода (регистрируется сигнал потенциометра, если угол открытого состояния дроссельной заслонки менее 3°. Одновременно контролируется частота W вращения двигателя: если W>2100 мин-1, то подача топлива прекращается и восстанавливается вновь при W
Интересной особенностью системы впрыска "Mono-Jetronic" является наличие в ее составе подсистемы стабилизации оборотов холостого хода с помощью электросервопривода, который воздействует на ось дроссельной заслонки (рис. 8). Электросервопривод снабжен реверсным электродвигателем 11 постоянного тока.

Сервопривод включается в работу в режиме холостого хода и совместно со схемой отключения вакуумного регулятора угла опережения зажигания (стабилизации холостого хода - рис. 2) обеспечивает стабилизацию частоты вращения двигателя в этом режиме.

Такая подсистема стабилизации холостого хода работает следующим образом.

Когда угол открытого состояния дроссельной заслонки менее 3°, сигнал К (см. рис. 9)


Является для ЭБУ сигналом режима холостого хода (замыкается концевой выключатель ВК штоком сервопривода). По этому сигналу запорный пневмоклапан ЗПК срабатывает и канал разрежения от задроссельной зоны впускного коллектора к вакуумному регулятору ВР перекрывается. Вакуумный регулятор с этого момента не работает и угол опережения зажигания становится равным значению установочного угла (6° до ВМТ). При этом двигатель на холостых оборотах работает устойчиво. Если в это время включается кондиционер или другой мощный потребитель энергии двигателя (например, фары дальнего света опосредствованно через генератор), то его обороты начинают падать. Двигатель может заглохнуть. Чтобы этого не происходило, по команде от электронной схемы управления холостым ходом (ЭСХХ) в контроллере включается электросервопривод, который несколько приоткрывает дроссельную заслонку. Обороты увеличиваются до номинального значения для данной температуры двигателя. Ясно, что при снятии нагрузки с двигателя его обороты уменьшаются до нормы тем же электросервоприводом.

В ЭБУ системы "Mono-Jetronic" имеется микропроцессор МКП (см. рис. 5) с постоянной и оперативной памятью (блок ЗУ). В постоянную память "зашита" эталонная трехмерная характеристика впрыска (ТХВ). Эта характеристика в какой-то мере подобна трехмерной характеристике зажигания, но отличается тем, что ее выходным параметром является не угол опережения зажигания, а время (продолжительность) открытого состояния центральной форсунки впрыска. Входными координатами характеристики ТХВ являются частота вращения двигателя (сигнал поступает от контроллера системы зажигания) и объем всасываемого воздуха (рассчитывается микропроцессором в ЭБУ впрыска). Эталонная характеристика ТХВ несет в себе опорную (базовую) информацию о стехиометрическом соотношении бензина и воздуха в ТВ-смеси при всех возможных режимах и условиях работы двигателя. Эта информация выбирается из памяти ЗУ в мик ропроцессор ЭБУ по входным координатам характеристики ТХВ (по сигналам датчиков ДОД, ДПД, ДТВ) и корректируется по сигналам от датчика температуры охлаждающей жидкости (ДТД) и кислородного датчика (КД).

О кислородном датчике надо сказать отдельно. Наличие его в системе впрыска позволяет удерживать состав ТВ-смеси постоянно в стехиометрическом соотношении (а=1). Это достигается тем, что датчик КД работает в цепи глубокой адаптивной обратной связи от системы выпуска отработавших газов к системе топливного питания (к системе впрыска).

Он реагирует на разность концентрации кислорода в атмосфере и в выхлопных газах. По сути дела датчик КД является химическим источником тока первого рода (гальваническим элементом) с твердым электролитом (специальная сотовая металлокерамика) и с высокой (не ниже 300°С) рабочей температурой. ЭДС такого датчика почти по ступенчатому закону зависит от разности концентрации кислорода на его элект родах (платино-радиевое пленочное покрытие с разных сторон пористой керамики). Наибольшая крутизна (перепад) ступеньки ЭДС приходится на значение а=1.

Датчик КД вворачивается в трубу выпускного канала (например, в выхлопной коллектор) и его чувствительная поверхность (положительный электрод) оказывается в потоке выхлопных газов. Над крепежной резьбой датчика имеются щели, через которые наружный отрицательный электрод сообщается с атмосферным воздухом. На автомобилях с каталитическим газонейтрализатором кислородный датчик устанавливается перед нейтрализатором и имеет спираль электроподогрева, так как температура выпускных газов перед нейтрализатором может быть ниже 300°С. Кроме того, электроподогрев кислородного датчика ускоряет его подготовку к работе.

Сигнальными проводами датчик соединен с ЭБУ впрыска. Когда в цилинд ры поступает бедная смесь (а>1), то концентрация кислорода в выхлопных газах чуть выше штатной (при а=1). Датчик КД выдает низкое напряжение (около 0,1 В) и ЭБУ по этому сигналу корректирует время продолжительности впрыска бензина в сторону его увеличения. Коэффициент а снова приближается к единице. При работе двигателя на богатой смеси кислородный датчик выдает напряжение около 0,9 В и работает в обратном порядке.

Интересно отметить, что кислородный датчик участвует в процессе смесеобразования только на режимах работы двигателя, при которых обогащение ТВ-смеси ограничено значением а>0,9. Это такие режимы как нагрузка на низких и средних оборотах и холостой ход на прогретом двигателе. В противном случае датчик КД отключается (блокируется) в ЭБУ и коррекция состава ТВ-смеси по концентрации кислорода в отработавших газах не осуществляется. Это имеет место, например, в режимах пуска и прогрева холодного двигателя и на его форсированных режимах (разгона и полной нагрузки). В этих режимах требуется значительное обогащение ТВ-смеси и поэтому срабатывание кислородного датчика ("прижимающего" коэффициент а к единице) здесь недопустимо.

На рис. 10 приведена функциональная схема системы впрыска "Mono-Jetronic" со всеми составными ее компонентами.

Любая система впрыска в своей топливоподающей подсистеме обязательно содержит замкнутое топ ливное кольцо, которое начинается от бензобака и заканчивается там же. Сюда входят: бензобак ББ, электробензонасос ЭБН, фильтр тонкой очистки топлива ФТОТ, распределитель топлива РТ (в системе "Mono-Jetronic" - это центральная форсунка впрыска) и регулятор давления РД, работающий по принципу стравливающего клапана при превышении заданного рабочего давления в замкнутом кольце (для системы "Mono-Jetronic" 1...1,1 бар).

Замкнутое топливное кольцо выполняет три функции:

С помощью регулятора давления поддерживает требуемое постоянное рабочее давление для распределителя топлива;

С помощью подпружиненной диафрагмы в регуляторе давления сохраняет некоторое остаточное давление (0,5 бар) после выключения двигателя, благодаря чему не допускается образование паровых и воздушных пробок в топливных магистралях при остывании двигателя;

Обеспечивает охлаждение системы впрыска за счет постоянной циркуляции бензина по замкнутому контуру. В заключение следует отметить, что система "Mono-Jetronic" используется только на легковых автомобилях среднего потребительского класса, например таких как западно-германские автомобили: "Volkswagen-Passat", "Volkswagen-Polo", "Audi-80".
РЕМОНТ&СЕРВИС-2"2000

В современных автомобилях в бензиновых силовых установках принцип работы системы питания схож с тем, который применяется на дизелях. В этих моторах она разделена на две – впуска и впрыска. Первая обеспечивает подачу воздуха, а вторая – топлива. Но из-за конструктивных и эксплуатационных особенностей функционирование впрыска существенно отличается от применяемого на дизелях.

Отметим, что разница в системах впрыска дизельных и бензиновых моторов все больше стирается. Для получения лучших качеств конструкторы заимствуют конструктивные решения и применяют их на разных видах систем питания.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная . Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Насос (электрический).
  2. Фильтрующий элемент (тонкой очистки).
  3. Топливопроводы.
  4. Рампа.
  5. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Системы питания дизельных двигателей

И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.

Сейчас на автомобилях применяется три типа дизельных впрысков:

  1. С распределительным ТНВД.
  2. Common Rail.
  3. Насос-форсунки.

Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.

Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.

В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.

В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.

Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.

В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.

Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.

Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.

Видео: Управление системой впрыска топлива

Работоспособность любого транспортного средства, в первую очередь, обеспечивается исправной работой его «сердца» - двигателя. В свою очередь, составляющей частью стабильной деятельности этого «органа» есть слаженная работа системы впрыска, с помощь которой подается необходимое для работы топливо. На сегодняшний день, благодаря множеству преимуществ, она полностью вытеснила карбюраторную систему. Главным положительным моментом ее использования является наличие «умной электроники», обеспечивающей точную дозировку топливовоздушной смеси, что повышает мощность транспортного средства и существенно увеличивает топливную экономичность. К тому же, электронная система впрыска в значительно большей степени помогает придерживаться строгих экологических норм, вопрос соблюдения которых, в последнее время, приобретает все большей актуальности. Учитывая вышесказанное, выбор темы данной статьи более чем уместен, так, что давайте рассмотрим принцип работы этой системы более детально.

1. Принцип работы электронного впрыска топлива

Электронная (или более известный вариант названия «инжекторная») система подачи топлива может устанавливаться на автомобили как с бензиновыми, так и с Однако, конструкция механизма в каждом из этих случаев, будет иметь существенные различия. Все топливные системы можно разделить за такими классификационными признаками:

- за способом подачи топлива выделяют прерывистую и непрерывную подачу;

За типом дозирующих систем различают распределители, форсунки, регуляторы давления, плунжерные насосы;

За способом управления количеством подаваемой горючей смеси – механические, пневматические и электронные;

За основными параметрами регулировки состава смеси – разряжение во впускной системе, при угле поворота дроссельной заслонки и расходе воздуха.

Система впрыска топлива современных бензиновых двигателей имеет либо электронное, либо механическое управление. Естественно, более совершенным вариантом является электронная система, так как она в значительно лучшей степени может обеспечить экономию топлива, сокращение уровня выброса вредных токсичных веществ, увеличение мощности мотора, улучшение общей динамики машины и облегчение «холодного пуска».

Первой, полностью электронной системой, стал продукт, выпущенный американской компанией Bendix в 1950 году. Спустя 17 лет, аналогичное устройство создала и компания Bosch, после чего оно было установлено на одну из моделей Volkswagen. Именно это событие положило начало массовому распространению системы электронного управления впрыском топлива (EFI - Electronic Fuel Injection), при чем не только на спортивных автомобилях, но и на транспортных средствах класса «люкс».

Полностью электронная система использует для своей работы (топливные форсунки), вся деятельность которых базируется на электромагнитном действии. В определенные моменты рабочего цикла двигателя, они открываются и остаются в таком положении на протяжении всего времени, необходимого для подачи того или иного количества топлива. Тоесть, время открытого состояния – прямо пропорционально требуемому количеству бензина.

Среди полностью электронных систем впрыска топлива, выделяют следующие два типы, отличающиеся в основном только способом измерения воздушного потока: систему с непрямым измерением воздушного давления и с прямым измерением воздушного потока. Такие системы, для определения уровня разрежения в коллекторе, используют соответствующий датчик (MAP - manifold absolute pressure). Его сигналы направляются на электронный модуль (блок) управления, где учитывая аналогичные сигналы поступающие с других датчиков, перерабатываются и перенаправляются на электромагнитную форсунку (инжектор), что и вызывает ее открытие на нужное для поступление воздуха время.

Хорошим представителем системы с датчиком давления есть система Bosch D-Jetronic (литера «D» - давление). Работа системы впрыска с электронным управлением базируется на некоторых особенностях. Сейчас мы опишем отдельные из них, характерные для стандартного типа такой системы (EFI). Начнем с того, что она может быть подразделена на три подсистемы: первая -отвечает за подачу топлива, вторая - за всасывание воздуха, ну а третья является электронной системой управления.

Структурными частями системы подачи топлива есть топливной бак, топливный насос, подающий топливопровод (направляющий от распределителя для топлива), топливную форсунку, регулятор давления топлива и обратный топливопровод. Принцип действия системы следующий: с помощью электрического топливного насоса (размещается внутри или рядом с топливным баком), бензин выходит из бака и подается в форсунку, а все загрязнения отфильтровываются с помощью мощного встроенного топливного фильтра. Та часть топлива, которая не была направлена через форсунку во всасывающий трубопровод, возвращается в бак через обратный топливопривод. Поддержание постоянного давления топлива обеспечивает специальный регулятор, отвечающий за стабильность этого процесса.

Система всасывания воздуха состоит из дроссельного клапана, всасывающего коллектора, очистителя воздуха, впускного клапана и воздухозаборной камеры. Принцип ее действия такой: при открытом дроссельном клапане, воздушные потоки проходят через очиститель, затем через расходометр воздуха (им оборудуются системы типа L), дроссельный клапан и качественно настроенный впускной патрубок, после чего попадают во впускной клапан. Функция направления воздуха в двигатель требует наличия привода. По ходу открытия клапана дросселя, в цилиндры мотора попадает значительно большее количество воздуха.

В некоторых силовых агрегатах применяются два разных способа измерения объема входящих воздушных потоков. Так, например, при использовании системы EFI (тип D), воздушный поток измеряют при помощи проведения мониторинга давления во всасывающем коллекторе, тоесть косвенно, в то время как аналогичная система, но уже типа L делает это напрямую, используя специальное устройство – расходометр воздуха.

В состав электронной системы управления входят следующие виды датчиков: двигателя, электронного управляющего блока (ECU), устройства топливной форсунки и соответствующей проводки. С помощью указанного блока, путем мониторинга датчиков силового агрегата определяется точное количество подаваемого форсунке топлива. Что бы подавать в мотор воздух/топливо в соответствующих пропорциях, блок управления запускает работу форсунок на конкретный период времени, которые именуют «шириной импульса впрыска» или «продолжительностью впрыска». Если описывать основной режим работы системы электронного впрыска топлива, с учетом уже названных подсистем, то он будет иметь следующий вид.

Попадая в силовой агрегат через систему всасывания воздуха, воздушные потоки измеряются с помощью расходометра. Когда воздух оказывается в цилиндре, происходит его смешивание с топливом, в чем не последнюю роль играет работа топливных форсунок (расположенных за каждым впускным клапаном всасывающего коллектора). Эти детали являются своеобразными электроклапанами, которые управляются электронным блоком (ECU). Он посылает на форсунку определенные импульсы, используя для этого включение и выключение цепи ее заземления. Когда она включена, происходит открытие и топливо распыляется на заднюю часть стенки впускного клапана. При попадании в подающийся снаружи воздух, оно смешивается с ним и испаряется благодаря низкому давлению всасывающего коллектора.

Сигналы, посылаемые электронным блоком управления, обеспечивают такой уровень подачи топлива, который будет достаточным для достижения идеального соотношения пропорций воздух/топливо (14,7:1), называемого еще стехиометрией. Именно ECU, исходя из измеренного объема воздуха и оборотов мотора, определяет основной объем впрыска. В зависимости от условий эксплуатации двигателя, этот показатель может изменяться. Блок управления отслеживает такие сменные величины как скорость двигателя, температура тосола (охлаждающей жидкости),содержания кислорода в выхлопных газах и угол расположения дросселя, в соответствии с чем производит корректировку впрыска, определяющую окончательный объем впрыскиваемого топлива.

Безусловно, система питания с электронным дозированием топлива, превосходит карбюраторное питание бензиновых двигателей, поэтому нет ничего удивительного в ее широкой популярности. Системы впрыска бензина, из-за наличия огромного числа электронных и подвижных прецизионных элементов, являются более сложными механизмами, поэтому, требуют высокого уровня ответственности в подходе к вопросу обслуживания.

Существование системы впрыска дает возможность более точно распределить топливо по цилиндрам мотора. Это стало возможным, благодаря отсутствию дополнительного сопротивления воздушному потоку, которое на впуске создавали карбюратор и дифузоры. Соответственно, повышения коэффициента наполнения цилиндров напрямую влияет на увеличения уровня мощности двигателя. Давайте же сейчас рассмотрим более детально все положительные моменты использования системы электронного впрыска топлива.

2. Плюсы и минусы электронного впрыска топлива

К положительным моментам стоит отнести:

Возможность более равномерного распределения топливо-воздушной смеси. Каждый цилиндр имеет собственную форсунку, подающую топливо непосредственно на впускной клапан, что позволяет избежать необходимости подачи через всасывающий коллектор. Это способствует улучшению его распределения между цилиндрами.

Высокоточность контролирования пропорций воздуха и топлива, в независимости от эксплуатационных условий двигателя. С помощью стандартной электронной системы, в двигатель поступает точная пропорция топлива и воздуха, что значительно улучшает дорожные качества транспортного средства, топливную экономичность и контроль за выхлопными газами. Улучшение работоспособности дросселя. Благодаря подачи топлива непосредственно на заднюю стенку впускного клапана, можно оптимизировать работу всасывающего коллектора, повысив тем самым скорость движения воздушного потока через впускной клапан. За счет таких действий улучшается крутящий момент и рабочая эффективность дросселя.

Повышение топливной экономичности и улучшение контроля токсичности выхлопных газов. В двигателях, оснащенных системой EFI, обогащение топливной смеси при холодном запуске и широко открытой дроссельной заслонке, поддается сокращению, так как смешивание топлива не является проблематичным действием. За счет этого, появляется возможность экономии топлива и улучшения контроля за выхлопными газами.

Улучшение эксплуатационных качеств холодного двигателя (в том числе и пусковых). Возможность впрыска топлива сразу на впускной клапан, в сочетании с улучшенной формулой распыления, соответственно повышает пусковые и эксплуатационные возможност холодного мотора. Упрощение механики и снижение чувствительности к регулировке. При холодном старте или измерении топлива, система EFI не зависит от регулировки обогащения топливной смеси. А поскольку, с механической точки зрения, она отличается простотой, то и требования к ее техническому обслуживанию снижены.

Однако, ни один механизм не может обладать исключительно положительными качествами, поэтому, в сравнении с теми же карбюраторными двигателями, моторы с электронной системой впрыска топлива имеют некоторые недостатки. К основным из них относят: высокую стоимость; практически полную невозможность ремонтных действий; высокие требования к составу топлива; сильную зависимость от источников электропитания и необходимость постоянного наличия напряжения (более современный вариант, который контролируется электроникой). Также, в случае поломки, не получится обойтись без специализированного оборудования и высококвалифицированного персонала, что выражается в слишком дорогостоящем обслуживании.

3. Диагностика причин неисправностей системы электронного впрыска топлива

Возникновение неполадок в системе впрыска – не такое уж и редкое явление. Особенно актуальным этот вопрос есть для владельцев старых моделей автомобилей, которым не раз приходилось сталкиваться как с обычным засорением форсунок, так и с более серьезными проблемами по части электроники. Причин неисправностей, часто возникающих в данной системе, может быть очень много, однако наиболее распространенными среди них есть следующие:

- дефекты («брак») конструктивных элементов;

Граничный срок службы деталей;

Систематическое нарушение правил эксплуатации автомобиля (использование низкокачественного топлива, загрязнения системы и т.д.);

Внешние отрицательные воздействия на конструктивные элементы (попадание влаги, механические повреждения, окисление контактов и др.)

Наиболее надежным способом их определения является компьютерная диагностика. Этот вид диагностической процедуры основывается на автоматическом фиксировании отклонений параметров системы от установленных значений нормы (режим самодиагностики). Обнаруженные ошибки (несоответствия) остаются в памяти электронного блока управления в виде так называемых «кодов неисправностей». Для проведения этого метода исследования, к диагностическому разъему блока подключают специальное устройство (персональный компьютер с программой и кабелем или сканер), задача которого считать все имеющиеся коды неисправностей. Однако, учтите – кроме специального оборудования, точность результатов проведенной компьютерной диагностики, будет зависеть от знаний и навыков человека который ее проводил. Поэтому, доверять процедуру следует только квалифицированным сотрудникам специальных сервисных центров.

В компьютерную проверку электронных составляющих системы впрыска входи т:

- диагностика топливного давления;

Проверка всех механизмов и узлов системы зажигания (модуля, высоковольтных проводов, свечей);

Проверка герметичности впускного коллектора;

Состава топливной смеси; оценка токсичности отработанных газов по шкалах СН и СО);

Диагностика сигналов каждого датчика (используется метод эталонных осцилограмм);

Проверка цилиндрической компрессии; контроль отметок положения ремня ГРМ и много других функций, которые зависят от модели машины и возможностей самого диагностического аппарата.

Проведение указанной процедуры необходимо если Вы хотите узнать имеются ли неисправности в системе электронной подачи (впрыска) топлива и если есть, то какие. Электронный блок EFI (компьютер) «помнит» все неисправности лишь пока система подключена к аккумуляторной батареи, если клемму отсоединить – вся информация исчезнет. Так будет, ровно до того момента, пока водитель вновь не включит зажигание и компьютер наново не проверит работоспособность всей системы.

На некоторых автомобилях, оборудованных системой электронной подачи топлива (EFI), под капотом имеется коробочка, на крышке которой Вы сможете заметить надпись "DIAGNOSIS" . К ней еще подведен довольно толстый жгут разных проводов. Если коробочку открыть, то с внутренней стороны крышки будет видна маркировка выводов. Возьмите любой провод и с его помощью замкните выводы "Е1" и "ТЕ1" , после чего сядьте за руль, включите зажигание и наблюдайте за реакцией лампочки "CHECK" (на ней изображен двигатель). Обратите внимание! Кондиционер обязательно должен быть в выключенном состоянии.

Как только Вы повернете ключ в замке зажигания, указанная лампочка начнет мигать. Если она «моргнет» 11 раз (или больше), через равный промежуток времени, это будет значить, что в памяти бортового компьютера нет информации и с поездкой на полную диагностику системы (в частности и электронного впрыска топлива) можно повременить. Если вспышки будут хоть как-то отличаться – значит стоит обратиться к специалистам.

Такой способ «домашней» мини-диагностики доступен не всем владельцам транспортным средств (в основном только иномарок), но тем у кого есть такой разъем, в этом плане повезло.

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема работы системы моновпрыска

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления — обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска — осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка — выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления — состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.


Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.


Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное — реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе — наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Основным назначением системы впрыска (иное название - инжекторная система) является обеспечение своевременной подачи топлива в рабочие цилиндры ДВС.

В настоящее время подобная система активно используется на дизельных и бензиновых двигателях внутреннего сгорания. Важно понимать, что для каждого типа двигателя система впрыска будет в значительной мере отличаться.

Фото: rsbp (flickr.com/photos/rsbp/)

Так в бензиновых ДВС процесс впрыска способствует образованию топливовоздушной смеси, после чего происходит ее принудительное воспламенение от искры.

В дизельных же ДВС подача топлива осуществляется под высоким давлением, когда одна часть топливной смеси соединяется с горячим сжатым воздухом и почти моментально самовоспламеняется.

Система впрыска остается ключевой составной частью общей топливной системы любого автомобиля. Центральным рабочим элементом подобной системы является топливная форсунка (инжектор).

Как уже было сказано ранее в бензиновых двигателях и дизелях применяются различные виды систем впрыска, которые мы и рассмотрим обзорно в этой статье, а детально разберем в последующих публикациях.

Виды систем впрыска на бензиновых ДВС

На бензиновых двигателях используются следующие системы подачи топлива - центральный впрыск (моно впрыск), распределенный впрыск (многоточечный), комбинированный впрыск и непосредственный впрыск.

Центральный впрыск

Подача топлива в системе центрального впрыска происходит за счет топливной форсунки, которая расположена во впускном коллекторе. Поскольку форсунка всего одна, то эту систему впрыска называют еще - моновпрыск.

Системы этого вида на сегодняшний день утратили свою актуальность, поэтому в новых моделях автомобилей они не предусмотрены, впрочем, в некоторых старых моделях некоторых автомобильных марок их можно встретить.

К преимуществам моно впрыска можно отнести надежность и простоту использования. Недостатками подобной системы являются низкий уровень экологичности двигателя и высокий расход топлива .

Распределенный впрыск

Система многоточечного впрыска предусматривает подачу горючего отдельно на каждый цилиндр, оснащенный собственной топливной форсункой. При этом ТВС образуется только во впускном коллекторе.

В настоящее время большинство бензиновых двигателей оснащено системой распределенной подачи топлива. Преимуществами подобной системы являются высокая экологичность, оптимальный расход топлива, умеренные требования к качеству потребляемого топлива.

Непосредственный впрыск

Одна из наиболее совершенных и прогрессивных систем впрыска. Принцип работы подобной системы заключается в прямой подаче (впрыске) топлива в камеру сгорания цилиндров.

Система непосредственной подачи топлива позволяет получать качественный состав ТВС на всех этапах работы ДВС с целью улучшения процесса сгорания горючей смеси, увеличения рабочей мощности двигателя, снижения уровня отработанных газов.

К недостаткам данной системы впрыска можно отнести сложную конструкцию и высокие требования к качеству топлива .

Комбинированный впрыск

Система данного типа объединила в себе две системы - непосредственный и распределенный впрыск. Зачастую она применяется для уменьшения выбросов токсичных элементов и отработанных газов, благодаря чему достигается высокие показатели экологичности двигателя.

Все системы подачи топлива, пнименяемые на бензиновых ДВС могут быть оснащены механическими или электронными устройствами управления, из которых последняя наиболее совершенна, поскольку обеспечивает наилучшие показатели экономичности и экологичности двигателя.

Подача топлива в подобных системах может осуществляться непрерывно или дискретно (импульсно). По мнению специалистов, импульсная подача топлива является наиболее целесообразной и эффективной и на сегодняшний день применяется во всех современных двигателях.

Виды систем впрыска дизельных ДВС

На современных дизельных двигателях применяются такие системы впрыска, как система насос-форсунки, система Сommon Rail, система с рядным или распределительным ТНВД (топливным насосом высокого давления).

Наиболее востребованные и считаются наиболее прогрессивными из них системы: Сommon Rail и насос-форсунки, о которых ниже поговорим чуть подробнее.

ТНВД является центральным элементом любой топливной системы дизельного двигателя.

В дизелях подача горючей смеси может осуществляться как в предварительную камеру, так и напрямую в камеру сгорания (непосредственный впрыск).

На сегодняшний день предпочтение отдается системе непосредственного впрыска, которую отличает повышенный уровень шума и менее плавная работа двигателя, по сравнению с впрыском в предварительную камеру, но при этом обеспечивается гораздо более важный показатель - экономичность.

Система впрыска насос-форсунки

Подобная система применяется для подачи и впрыска топливной смеси под высоким давлением центральным устройством - насос-форсунками.

По названию можно догадаться, что ключевой особенностью данной системы является то, что в единственном устройстве (насос-форсунке) объединены сразу две функции: создание давления и впрыск.

Конструктивным недостатком данной системы является то, что насос оснащен приводом постоянного типа от распредвала двигателя (не отключаемый), который приводит к быстрому износу конструкции. Из-за этого производители все чаще делают выбор в пользу системы впрыска Сommon Rail.

Система впрыска Сommon Rail (аккумуляторный впрыск)

Это более совершенная система подачи ТС для большинства дизельных двигателей. Ее название пошло от основного конструктивного элемента - топливной рампы, общей для всех форсунок. Сommon Rail в переводе с английского как раз и означает - общая рампа.

В такой системе топливо подается к топливным форсункам от рампы, которую еще называют аккумулятором высокого давления, из-за чего у системы появилось и второе название - аккумуляторная система впрыска.

В системе Сommon Rail предусмотрено проведение трех этапов впрыска - предварительного, основного и дополнительного. Это позволяет уменьшить шум и вибрации двигателя, сделать более эффективными процесс самовоспламенения топлива, уменьшить количество вредных выбросов в атмосферу.

Для управления системами впрыска на дизелях предусмотрено наличие механических и электронных устройств. Системы на механике позволяют контролировать рабочее давление, объем и момент впрыска топлива. Электронные системы предусматривают более эффективное управление дизельными ДВС в целом.