В каком двигателе смесеобразование более качественное. Смесеобразование в дизелях (внутреннее смесеобразование)

Система смесеобразования

В камерах сгорания неразделенного типа, все пространство сжатия представляет собой единый объем, ограниченный днищем поршня, крышки и стенками цилиндра. Необходимое качество смесеобразования достигается за счет согласования конфигурации камеры сгорания с формой и распределением факелов топлива, выходящих из отверстий распылителя форсунки. Вихревое движение воздуха, создаваемое в период газообмена, к концу сжатия невелико и в камерах этого типа играет второстепенное значение. Камеры неразделенного типа характеризуются простотой конструктивного исполнения и высокой экономичностью. Простота конфигурации камеры позволяет обеспечивать относительно низкие тепловые напряжения в ее стенках.

Объемное смесеобразование обеспечивает равномерное распределение всей цикловой подачи топлива в массе заряда воздуха, находящегося в камере сгорания, что достигается соответствующей формой топливного факела. Качество смесеобразования при этом в значительной мере зависит от наличия организованного вихреобразования потоков воздуха. В двухтактном двигателе вихреобразование обеспечивается наклонным или тангенциальным расположением продувочных окон.

Преимущества объемного смесеобразования: простота камеры сгорания при высоком качестве ее очистки; небольшая потеря теплоты через стенки камеры сгорания благодаря сравнительно небольшой поверхности; хорошие пусковые качества дизеля, не требующие дополнительных запальных устройств; высокая экономичность дизеля при расходе топлива 155 - 210 г/ (кВт ч). Недостатки: высокий коэффициент избытка воздуха (б = 1,6 ч2,2); высокое давление распыла (до 100 - 130 МПа); повышенные требования к топливной аппаратуре; невозможность качественного смесеобразования при небольших диаметрах цилиндров и малых значениях цикловой подачи топлива.

Объемное смесеобразование применяется практически у всех дизелей с диаметром цилиндра более 150 мм.

Система газораспределения

Поперечно-щелевая продувка. Особенность этого способа заключается в том, что выпускные и продувочные окна расположены с разных сторон втулки цилиндра. Они соединены соответственно с выпускным коллектором и с ресивером продувочного воздуха. Продувочным окнам придан наклон вверх, в связи с чем воздух движется сначала к крышке цилиндра, затем вытесняя отработавшие газы, меняет направление на обратное.

Чтобы к моменту открытия продувочных окон давление в цилиндре успело снизиться и стать ниже давления продувочного воздуха, выпускные окна предусмотрены выше продувочных. Однако в этом случае поршень, двигаясь вверх, закроет сначала продувочные окна, выпускные будут еще частично открыты. Процесс продувки после закрытия продувочных окон заканчивается, следовательно, через не полностью закрытые выпускные окна будет выходить (частичная утечка) свежий заряд воздуха. Чтобы избежать это явление, у крупных двигателей выпускные и продувочные окна выполняют одинаковой высоты, но в ресивере продувочного воздуха ставят невозвратные клапаны, которые предотвращают заброс отработавших газов из цилиндра в ресивер при открытии окон; продувка начинается лишь при падении давления в цилиндре после открытия выпускных окон. При движении же поршня вверх продувочный воздух будет поступать до момента закрытия и тех и других окон. С той же целью в некоторых крупных двигателях на выпускном патрубке ставят приводной золотник, привод которого регулируют так, чтобы в момент перекрытия поршнем продувочных окон золотник перекрыл выпускные.

Способ поперечно - щелевой продувки широко распространен вследствие его простоты.

Распределительный вал стальной. На нем имеются для каждого цилиндра по две пары кулачковых шайб симметричного профиля (переднего и заднего хода) для привода топливных насосов и воздухораспределителей. Кулачковые шайбы топливных насосов, а также их ролики - толкатели имеют на торцах скосы, и при реверсировании достаточно передвинуть распределительный вал в осевом направлении, чтобы соответствующие кулачковые шайбы стали под приводные ролики. На кормовом торце двигателя у распределительного вала размещены реверсивные баллоны. Распределительный вал состоит из ряда секций. Каждая отдельная секция состоит из участка вала с кулачными шайбами выхлопных клапанов и топливных насосов и соединительных частей.

Привод распределительного вала цепной; он расположен у первого цилиндра. Цепное колесо, закрепленное на коленчатом валу, через одинарную роликовую цепь приводит в движение цепное колесо, которое сидит на муфте распределительного вала. Цепь проходит через две направляющие и две натяжные звездочки, закрепленные в поворотном кронштейне. Натяжение цепи осуществляется разворотом кронштейна с помощью регулировочного болта с шаровой гайкой.

  • Лекция 2: топлива и продукты сгорания.
  • 1. Виды топлив применяемых в теплоэнергетических установках и их краткая характеристика.
  • 2. Физико-химические основы процесса сгорания топливо-воздушных смесей в различных теплоэнергетических установках.
  • 3. Продукты сгорания и их влияние на окружающую среду. Способы обезвреживания продуктов сгорания.
  • Токсичные вещества, содержащиеся в отработавших газах
  • Контрольные вопросы.
  • Лекция 3: рабочий процесс поршневой энергетической установки транспортной техники
  • 1. Основные понятия и определения. Цикл, такты и фазы газораспределения поршневых двс. Индикаторные диаграммы.
  • 2. Процессы газообмена. Характеристика и параметры процессов газообмена.
  • 3. Влияние различных факторов на процессы газообмена. Развития систем газообмена.
  • 4. Процесс сжатия
  • Значения параметров процесса сжатия
  • Лекция 4: процесс смесеобразования, воспламенение и сгорания топлива в двигателях с искровым зажиганием.
  • 1. Процесс смесеобразование в двигателях с искровым зажиганием.
  • 2. Воспламенение и сгорание топлива.
  • 3. Нарушения сгорания.
  • 4. Влияние различных факторов на процесс сгорания.
  • 1. Впрыскивание и распыливание топлива.
  • 2. Смесеобразование в дизеле.
  • 3. Процессы сгорания и тепловыделения.
  • 4. Процесс расширения
  • Значения параметров процесса расширения
  • Контрольные вопросы.
  • Лекция 6: индикаторные и эффективные показатели
  • 1. Индикаторные показатели. Влияние различных факторов на индикаторные показатели двигателя с искровым зажиганием и дизеля.
  • Влияние различных факторов на индикаторные показатели дви­гателя с искровым зажиганием.
  • Pис. 6.1. Зависимости индикаторного кпд от коэффициента избытка воздуха для двигателя с искровым зажиганием (a) и дизеля (б)
  • Влияние различных факторов на индикаторные показатели дизеля.
  • 2. Механические потери в двигателе
  • 3. Эффективные показатели двигателя
  • Значения индикаторных и эффективных показателей
  • 4. Тепловой баланс двигателя
  • Влияние различных факторов на тепловой баланс двигателя
  • Контрольные вопросы.
  • Лекция 7. Характеристики и способы повышения мощности энергетических установок.
  • 1. Характеристики энергетических установок.
  • 2. Виды характеристик поршневых двс.
  • 3. Способы повышения мощности двигателя
  • Контрольные вопросы
  • 1. Кинематические характеристики движения.
  • 2. Динамика кривошипно-шатунного механизма
  • 3. Влияние конструктивных соотношений кривошипно-шатунного механизма на параметры двигателя
  • Контрольные вопросы.
  • Лекция 9: испытание энергетических установок.
  • 1. Цели и виды испытаний.
  • 2. Методы и приборы для проведения испытаний энергоустановок.
  • 3. Техника безопасности при испытаниях.
  • Контрольные вопросы.
  • Лекция 10: кривошипно-шатунный механизм.
  • 1. Классификация и назначение, компоновочные и кинематические схемы, конструкция элементов корпусной и цилиндровой группы.
  • 2. Конструкция элементов поршневой группы.
  • 3. Конструкция элементов шатунной группы.
  • 4. Конструкция коленчатого вала
  • Контрольные вопросы.
  • Лекция 11: механизм газораспределения
  • 1. Назначение, основные конструкционные решения и схемы грм.
  • 2. Конструкция элементы механизма газораспределения
  • Контрольные вопросы.
  • Лекция №12. Смазочная система и система охлаждения
  • 1. Основные функции и работа смазочной системы.
  • 2. Основные агрегаты смазочной системы
  • 3. Назначение и основные требования системе охлаждения
  • 4. Агрегаты системы охлаждения и регулирование температу­ры охлаждающей жидкости
  • 12.2. Схема системы охлаждения
  • Контрольные вопросы.
  • Лекция 13. Система питания топливом и воздухом. Система питания двигателя
  • 1. Назначение, основные требования и конструктивные особенности системы питания двигателей с искровым зажиганием
  • 2. Назначение, основные требования и конструктивные особенности приборов системы питания дизелей
  • 3. Требования, предъявляемые к системам очистки воздуха, конструктивные особенности приборов подачи воздуха.
  • Контрольные вопросы
  • Лекция №14. Системы пуска энергетических установок.
  • 1. Способы пуска двигателя
  • 2. Средства, облегчающие пуск двигателя
  • Контрольные вопросы
  • Лекция 15. Работа энергетических установок в эксплуатации
  • 1. Работа энергетических установок в эксплуатации на неустановившихся режимах.
  • 2. Технико-экономические показатели работы энергетических установок в эксплуатации.
  • Литература
  • 1. Процесс смесеобразование в двигателях с искровым зажиганием.

    Комплекс взаимосвязанных процессов дози­рования топлива и воздуха, распыливания и испарения топлива, а также перемешивания топлива с воздухом называется смесеоб­разованием. От состава и качества топливовоздушной смеси, полу­ченной при смесеобразовании, зависит эффективность процесса сгорания.

    В четырехтактных двигателях обычно организуют внешнее сме­сеобразование , которое начинается дозированием топлива и воз­духа в форсунке, карбюраторе или в смесителе (газовый двига­тель), продолжается во впускном тракте и завершается в цилиндре двигателя.

    Различают два типа впрыскивания топлива : центральное - впрыс­кивание топлива во впускной трубопровод и распределенное - впрыскивание во впускные каналы головки цилиндров.

    Распыливание топлива при центральном впрыскивании и в кар­бюраторах начинается в период, когда струя топлива после ее выхода из отверстия форсунки или распылителя под воздействи­ем сил аэродинамического сопротивления и за счет высокой ки­нетической энергии воздуха распадается на пленки и капли раз­личных диаметров. По мере движения капли дробятся на более мелкие. С повышением мелкости распыливания растет суммарная поверхность капель, что приводит к более быстрому превраще­нию топлива в пар.

    С увеличением скорости воздуха мелкость и однородность рас­пыливания улучшаются, а при большой вязкости и поверхност­ном натяжении топлива - ухудшаются. Так, при пуске карбюра­торного двигателя распыливания топлива практически нет.

    При впрыскивании бензина качество распыливания зависит от давления впрыскивания, формы распыливающих отверстий фор­сунки и скорости течения топлива в них.

    В системах впрыскивания наибольшее применение получили электромагнитные форсунки, к которым топливо подводится под давлением 0,15...0,4 МПа для получения капель требуемого раз­мера.

    Распыливание пленки и капель топлива продолжается при дви­жении топливовоздушной смеси через сечения между впускным клапаном и его седлом, а на частичных нагрузках - в щели, обра­зуемой прикрытой дроссельной заслонкой.

    Образование и движение пленки топлива возникает в каналах и трубопроводах впускной системы. При движении топлива из-за взаимодействия с потоком воздуха и гравитации оно частично оседает на стенках впускного трубопровода и образует топливную пленку. Из-за действия сил поверхностного натяжения, сцепле­ния со стенкой, тяжести и других сил скорость движения пленки топлива в несколько десятков раз меньше скорости потока смеси. С пленки потоком воздуха могут срываться капельки топлива (вто­ричное распыливание).

    При впрыскивании бензина обычно в пленку попадает 60...80 % топлива. Ее количество зависит от места установки форсунки, даль­нобойности струи, мелкости распыливания, а в случае распреде­ленного впрыскивания в каждый цилиндр - и от момента его начала.

    В карбюраторных двигателях на режимах полных нагрузок и малой частоты вращения до 25% от общего расхода топлива по­падает в пленку на выходе из впускного трубопровода. Это связа­но с небольшой скоростью потока воздуха и недостаточной мел­костью распыливания топлива. При прикрытии дроссельной зас­лонки количество пленки во впускном трубопроводе меньше из-за вторичного распыливания топлива около заслонки.

    Испарение топлива необходимо для получения однородной смеси топлива с воздухом и организации эффективного процесса сгорания. Во впускном канале, до поступления в цилиндр, смесь является двух­фазной. Топливо в смеси находится в газовой и жидкой фазах.

    При центральном впрыскивании и карбюрации для испарения пленки впускной трубопровод специально подогревают жидко­стью из системы охлаждения или отработавшими газами. В зависи­мости от конструкции впускного тракта и режима работы на вы­ходе из впускного трубопровода в горючей смеси топливо на 60...95 % находится в виде паров.

    Процесс испарения топлива продолжается и в цилиндре во время тактов впуска и сжатия, а к началу сгорания топливо испа­ряется практически полностью.

    При распределенном впрыскивании топлива на тарелку впускно­го клапана и работе двигателя на полной нагрузке испаряется 30...50 % цикловой дозы топлива до поступления в цилиндр. При впрыскивании топлива на стенки впускного канала доля испа­рившегося топлива возрастает до 50...70 % благодаря увеличению времени на его испарение. Подогрев впускного трубопровода в этом случае не нужен.

    Условия для испарения бензина на режимах холодного пуска ухудшаются, а доля испарившегося топлива перед поступлением в цилиндр при этом составляет лишь 5... 10%.

    Неравномерность состава смеси , поступающей в разные цилиндры двигателя, при центральном впрыскивании и карбюрации опреде­ляется разной геометрией и длиной каналов (неодинаковым сопро­тивлением ветвей впускного тракта), разницей скоростей движения воздуха и паров, капель и, главным образом, пленки топлива.

    При неудачной конструкции впускного тракта степень равно­мерности состава смеси может достигать ±20%, что существенно снижает экономичность и мощность двигателя.

    Неравномерность состава смеси зависит также от режима ра­боты двигателя. При центральном впрыскивании и в карбюратор­ном двигателе с ростом частоты вращения улучшаются распыли­вание и испарение топлива, поэтому неравномерность состава смеси снижается. Смесеобразование улучшается при уменьшении нагрузки двигателя.

    При распределенном впрыскивании неравномерность состава смеси по цилиндрам зависит от идентичности работы форсунок. Наибольшая неравномерность возможна на режиме холостого хода при малых цикловых дозах.

    Организация внешнего смесеобразования газовых автомобиль­ных двигателей подобна карбюраторным двигателям. Топливо в воздушный поток вводится в газообразном состоянии. Качество топливовоздушной смеси при внешнем смесеобразовании зави­сит от температуры кипения и коэффициента диффузии газа. При этом обеспечивается формирование практически однородной сме­си, а ее распределение по цилиндрам равномернее, чем в карбю­раторных двигателях.

    Смесеобразованием называется приготовление горючей смеси для подготовки топлива к сжиганию в цилиндре ДВС. Процесс горения длится очень короткое время, например, в МОД оно составляет 0,05-0,1 секунды, в ВОД - 0,003-0,015 секунды. Для того, чтобы обеспечить полное сгорание топлива за этот короткий промежуток времени необходимо приготовить рабочую смесь, состоящую из мелко распыленного жидкого топлива (дизельные ДВС) или паров топлива (карбюраторные ДВС) перемешанных с воздухом. Для обеспечения высокого качества смеси, которое оценивается коэффициентом иэбытка воздуха (α), топливо должно быть мелко распылено и равномерно распределено по всему объёму камеры сгорания. Камера должна иметь конфигурацию, соответствующую форме и дальнобойности факела от форсунки.

    Образование топливного факела характеризуется дальнобойностью, углом конуса распыливания и размером капель топлива. Для лучшего использования факел образует капельный туман в виде расходящегося конуса. Этот туман должен проникать во все части камеры сгорания, но не касаться поверхностей деталей ЦПГ. Капли топлива, попадающие на стенки цилиндровой втулки, растворяют масляную плёнку, плохо перемешиваются с воздухом и сгорают не полностью, образуя сажу и нагар. По способу смесеобразования двигатели различают на:

    1). Однокамерные - струйное смесеобразование с непосредственным впрыском топлива, применяется в ДВС большой и средней мощности, имеющих различные формы головок поршней. У них маленькая поверхность теплопередачи и поэтому небольшие тепловые потери. Это даёт большую экономичность и хорошие пусковые качества.

    Недостатки: высокое давление впрыска топлива (до 1200 кг/см 2), усложняющее топливную аппаратуру, жёсткость работы и повышенная шумность двигателя.

    2). Предкамерное – такое смесеобразование применяется на ВОД с диаметром цилиндра D=180-200 мм. В крышке цилиндров размещена предкамера, объём которой составляет 20-40% общего объёма камеры сгорания. Предкамера соединена с основной камерой каналами, число которых может быть от 1 до 12. Часть топлива сгорает в предкамере, поэтому отпадает необходимость подачи его с большим давлением. Такие ДВС менее чувствительны к качеству топлива.

    Недостатки: повышенный удельный расход топлива, трудность запуска в холодное время года, значительные тепловые потери из-за большой поверхности охлаждения, малая экономичность двигателя.

    3). Вихрекамерное - применяется также на ВОД в виде сферической или цилиндрической камеры сгорания, расположенной в крышке цилиндров. Её объём составляет 50-80%. Она сообщается с основной камерой сгорания каналом большого сечения. Воздух, поступая в вихревую камеру во время такта сжатия, получает вращательное движение. Благодаря этому, впрыскивющееся под давлением 100-140кг/см 2 топливо, хорошо перемешивается с воздухом и сгорает. Вместе с горячими продуктами сгорания часть его перетекает в основную камеру, создавая вихревые потоки, где сгорает полностью.


    Преимущества: снижение α, бездымный выхлоп, низкое давление впрыска, применение однодырчатых распылителей форсунок, что удешевляет изготовление топливной аппаратуры.

    Недостатки: сложность конструкции цилиндровой крышки, трудность запуска холодного двигателя и необходимость применения спирали накаливания для подогрева воздуха в камере.

    4). Плёночное - камера сгорания расположена в головке поршня и непосредственно соединена с надпоршневым пространством. Диаметр камеры составляет ≈ 0,3-0,5D цилиндровой втулки. Головка поршня охлаждается маслом, поэтому температура её наружной поверхности не более 200-400°C. Топливо впрыскивается под давлением ≈ 150 кг/см 2 через многодырчатую форсунку. Примерно 95% топлива попадает на внутреннюю поверхность камеры поршня в виде тончайшего слоя, остальное распыливается в объёме камеры сгорания. Вначале происходит самовоспламенение распыленного топлива, затем от горящего факела воспламеняются его пары. Интенсивное перемешивание паров топлива с воздухом происходит за счёт вихреобразования. ДВС с таким смесеобразованием являются многотопливными т.е. могут использовать легкие и тяжелые сорта топлива.

    Сгорание топлива может протекать только в присутствии окислителя, в качестве которого используется кислород, находящийся в воздухе. Следовательно, для полного сгорания определенного количества топлива необходимо иметь определенное количество воздуха, соотношение которых в смеси оценивается коэффициентом избытка воздуха.

    Так как воздух является газом, а нефтяные топлива - жидкостью, то для полного окисления жидкое топливо необходимо превратить в газ, т. е. испарить. Поэтому кроме рассмотренных четырех процессов, соответствующих названиям тактов работы двигателя, всегда присутствует еще один - процесс смесеобразования.

    Смесеобразование - это процесс приготовления смеси топлива с воздухом для сжигания ее в цилиндрах двигателя.

    По способу смесеобразования ДВС разделяются на:

    • двигатели с внешним смесеобразованием
    • двигатели с внутренним смесеобразованием

    В двигателях с внешним смесеобразованием приготовление смеси воздуха с топливом начинается за пределами цилиндра в специальном приборе - карбюраторе. Такие ДВС называются карбюраторными. В двигателях с внутренним смесеобразованием смесь приготавливается непосредственно в цилиндре. К таким ДВС относятся дизели.

    Построение ВСХ.

    Эффективный крутящий момент:



    с предкамерные

    вихревое


    дизель
    .
    Часовой расход топлива:

    5. Ускорение поршня.
    ,

    с наддувом, без наддува

    по числу цилиндров

    по системе зажигания

    по системе питания

    Скорость поршня.

    ,


    8 Перемещение поршня

    м, а при = м



    9 Наддув. , то

    10. Процесс выпуска

    11. система охлаждения

    14 .Расчёт масляных насосов.

    Процесс сгорания.

    Основной процесс рабочего цикла двигателя, в течение которого теплота идет на повышение внутренней энергии рабочего тела и на совершение механической работы.

    Согласно первому закону термодинамики можно записать уравнение:

    Для дизелей:

    Для бензиновых:

    Коэффициент выражает количество долей низшей теплоты сгорания, используемой на повышение внутренней энергии и на совершение работы. Для инжекторных двигателей: , карбюраторные: , дизели: .

    Коэффициент использования зависит от режима работы двигателя, от конструкции, от частоты вращения, от системы охлаждения, от способа смесеобразования.

    Тепловой баланс на участке можно записать в более краткой форме:

    Расчетные уравнения сгорания: -для бензиновых двигателей: T z – температура конца сгорания, при подводе тепла при изохоре (V=const), следует:

    Для дизелей: при V=const и р= const:

    Где - степень повышения давления.

    Средняя мольная теплоемкость продуктов сгорания:

    После подстановки всех известных параметров и последующих преобразований решают уравнение второго порядка:

    Откуда:

    Давление сгорания для бензиновых двигателей:

    Степень повышения давления:

    Давление сгорания для дизелей:

    Степень предварительного расширения:

    Процесс сжатия.

    В период процесса сжатия в цилиндре двигателя повышаются температура и давление рабочего тела, что обеспечивает надежное воспламенение и эффективное сгорание топлива.

    Расчет процесса сжатия сводится к определению среднего показателя политропы сжатия , параметров конца сжатия и теплоемкости рабочего тела в конце сжатия .

    Для бензиновых двигателей: давление и температура в конце сжатия.

    Средняя мольная теплоемкость рабочей смеси:


    Классификация ДВС.

    ДВС подразделяются: карбюраторные, дизельные, инжекторные.

    По методу осущ. газообмена: двухтактные, четырехтактные, без наддува

    По способу воспламенения: с воспламенением от сжатия, с принудительным зажиганием.

    По способу смесеобразования: с внешним (карбюраторные и газовые), с внутренним (дизельные и бензиновые с впрыском топлива в цилиндр).

    По роду применения: легкое, тяжелое, газообразное, смешанное.

    По системе охлаждения: жидкостное, воздушное.

    ДВС дизель: с наддувом, без наддува.

    По расположению цилиндров: однорядные, двухрядные, V-образные, оппозитные, рядные.

    Масляной радиатор, расчет.

    Масляный радиатор представляет собой теплообменный аппарат для охлаждения масла, циркулирующего в системе двигателя.

    Количество теплоты, отводимой водой от радиатора:

    Коэффициент теплоотдачи от масла к воде, Вт\м 2 *К

    Поверхность охлаждения водомасляного радиатора, м 2 ;

    Средняя температура масла в радиатора,К;

    Средняя температура воды в радиаторе,К.

    Коэффициент теплоотдачи от масла к воде, (Вт\(м 2 *К))

    α1-коэффициент теплоотдачи от масла к стенкам радиатора, Вт/м 2 *К

    δ-толщина стенки радиатора,м;

    λтеп-коэффициент теплопроводности стенки, Вт/(м*К).

    α2-коэффициент теплоотдачи от стенок радиатора к воде, Вт/м 2 *К

    Количество тепла (Дж\с), отводимого маслом от двигателя:

    Средняя теплоемкость масла, кДЖ/(кг*К),

    Плотность масла, кг/м 3 ,

    Циркуляционный расход масла, м 3 /с

    И -температура масла на входе в радиатор и на выходе из него,К.

    Поверхность охлаждения масляного радиатора, омываемая водой:

    Форсунка, расчет.

    Форсунка служит для распыливания и равномерного распределения топлива по объему камеры сгорания дизеля и выполняются открытыми или закрытыми. В закрытых форсунках распыливающиеотверстие сообщаются с трубопроводом высокого давления только в период передачи топлива. В открытых форсунках эта связь постоянна. Расчет форсунки – опр. Диаметра сопловых отверстий.

    Объем топлива (мм3/цикл), впрыскиваемого форсункой за один рабочий ход четырехтактного дизеля (цикловая подача):

    Время истечения топлива (с):

    Угол поворота коленчатого вала, град

    Средняя скорость истечения топлива (м\с) через сопловые отверстия распылителя:

    Среднее давление впрыска топлива, Па;

    -среднее давление газа в цилиндре в период впрыска, Па;

    Давление в конце сжатия и сгорания,

    Суммарная площадь сопловых отверстий форсунки:

    - коэффициент расхода топлива, 0,65-0,85

    Диаметр сопловых отверстий форсунки:

    12. В бензиновых двигателях нашли наибольшее распространение:

    1. Смещенная (Г-образная) (рис.1);

    2. Полусферическая (рис.2);

    3. Полуклиновая (рис.3) камеры сгорания

    В дизелях форма и размещение камеры сгорания определяют способ смесеобразования.

    Применяют два вида камер сгорания: неразделенные и разделенные.

    Неразделенные камеры сгорания (рис.4) образованы

    Построение ВСХ.

    Эффективный крутящий момент:

    Эффективная мощность бензинового двигателя:


    Эффективная мощность дизельного (с неразделенной камерой сгорания) двигателя:


    с предкамерные

    вихревое

    Удельный эффективный расход топлива: бензин

    дизель
    .
    Часовой расход топлива:

    5. Ускорение поршня.
    ,

    Двигатели внешнего и внутреннего смесеобразования.

    по типу: карбюраторные, инжекторные, дизельные

    по смесеобразованию: внешние, внутренние

    по топливу: бензиновый, дизельный, газообразный

    по системе охлаждения: воздушное, водяное

    с наддувом, без наддува

    по числу цилиндров

    по расположению цилиндров: V,W,Х – образные

    по системе зажигания

    по системе питания

    по конструкторским особенностям

    Скорость поршня.

    ,


    8 Перемещение поршня в зависимости от угла поворота кривошипа для двигателя с центральным кривошипно-шатунным механизмом

    Для рачётов удобнее использовать выражение в котром перемещение поршня является функцией одного угла используют значение только первых двух членов, вследствии малой величины с выше второго порядка из уравнения следует что при м, а при = м

    Заполняют таблицу, и строят кривую. При повороте кривошипа от в.м.т до н.м.т движение поршня происходит под влиянием перемещения шатуна вдоль оси цилиндра и отклонения его от этой оси.В следствии совпадения направлений перемещений шатуна при движении кривошипа по первой четверти окружности (0-90) поршени проходит больше половины своего пути. При прохождении второй четверти (90-180) проходит меньшее расстояние чем за первую. При граф построении указанную закономерность учитывают введением поправки Брикса

    Перемещение поршня в смещнном кривошипно шатунном механизме

    9 Наддув. Анализ формулы эффективной мощности двигателя, показывает, что если принять неизменными рабочий объём цилиндров и состав смеси, то величина Ne при n=const будет определяться отношением 𝝶е/α, значением 𝝶v и параметрами воздуха, поступающего в двигатель. Т.к массовый заряд воздуха Gв(кг), остающегося в цйилндрах двигателя , то из уравнений следует, что при увеличении плотности воздуха(наддува), поступившего в двигатель, эффективная мощность Ne значительно повышается.

    А) наиболее распространённая схема с механическим приводом нагнетателя, от коленвала.центробежные, поршневые или роторно-шестёрёнчатые нагнетатели.

    Б)объединение газовой турбины и компрессора-наиболее распространн в автомобилях и тракторах

    В)комбинированный наддув-1 ступень комрессор не связан механически с двигателем, вторая ступень компрессора приводится в движение от коленвала.

    Г)валу турбокомпрессора связан с коленвалом - такая компоновка позволяет при избытке мощности газовой турбины отдавать её на коленвал, а принедостатке отбирать от двигателя.

    10. Процесс выпуска . За период выпуска из цилиндра двигателя удаляются отработавшие газы. Открытие выпускного клапана до прихода поршня в н.м.т, снижая полезную работу расширения (площадь b"bb’’b"), способствует качественной очистке цилиндра от продуктов сгорания и уменьшает работу, необходимую для выталкивания отработавших газов. В современных двигателях открытие Впускного клапана происходит за 40 - 80 до н.м.т (точка b’)и с этого момента начинается истечение отработавших газов с критческой скоростью 600

    700 м/с. За этот период, заканчивающийся вблизи н.м.т в двигателях без наддува и несколько позже при наддуве, удаляется 60 -70% отработавших газов. При дальнейшем движении поршня к в.м.т. истечение газов происходит со скоростью 200 - 250 м/с и к концу вьшуска не превышает 60 - 100 м/с. Средняя скорость истечения газов за период выпуска на номинальном режиме находится в пределах 60 - 150 м/с.

    Закрытие выпускного клапана происходит через 10- 50 После в.м.т, что повышает качество очистки цилиндра за счет эжекционного свойства потока газа, выходящего из цилиндра с большой скоростью.

    Снижение токсичности при эксплуатации: 1. Повышение требований к качеству регулировки топливо подающей аппаратуры, систем и устройств смесеобразования и сгорания; 2.более широким применением газовых топлив, продукты сгорания которых мение токсичны, а также переводом бензиновых двигателей на газообразное топливо.При проектировании: 1 установка доп обор,(катализаторы, дожигатели, нейтра-лизаторы); 2 разработка принципиально новых двигателей(электрические, инерционные, аккамуляторные)

    11. система охлаждения . Охлаждение двигателя применяется в целях принудительного отвода теплоты от нагретых деталей для обеспечения оптимального теплового состояния двигателя и его нормальной работы. Большая часть отводимой теплоты воспринимается системой охлаждения, меньшая - системой смазки и непосредственно окружающей средой. В зависимости от рода используемого теплоносителя в автомобильных и тракторных двигателях применяют систему жидкостного или воздушного охлаждения. В качестве жидкого охлаждающего

    вещества Используют воду и некоторые другие высококипящие жидкости, а в системе воздушного охлаждения - воздух.

    К преимутцествам жидкостного охлаждения следует отнести:

    А) более эффективный отвод теплоты от нагретых деталей двигателя при любой тепловой нагрузке;

    б) быстрый и равномерный прогрев двигателя при пуске; в) допустимость применения блочных конструкций цилиндров двигателя; г) меньшая склонность к детонации в бензиновых двигателях; д) более стабильное тепловое состояние двигателя при изменении режима его работы; е) меньшие затраты моащости на охлаждение и возможность использования тепловой энергии, отводимой в систему охлаждения.

    Недостатки системы жидкостного охлаждения: а) большие затраты на обслуживание и ремонт в эксплуатации; б) пониженная надежность работы двигателя при отрицательных температурах окружающей среды и большая чувствительностьк ее изменению.

    Расчет основных конструктивных элементов системы охлаждения производится исходя из количества теплоты, отводимой от двигателя в единицу времени.

    При жидкостном охлаждении количество отводимой теплоты (Дж/с)

    где ( - количество жидкости, циркулирующей в системе, кг/с;

    4187 - теплоёмкость жидкости, Дж/(кг К); - температура выходящей из двигателя жидкости и входящей в него, К. расчёт системы сводится к определению размеров жидкосного насоса, поверхности радиатора, и подбору вентилятора.

    14 .Расчёт масляных насосов. Одним из основных элементов смазочной системы является масляный насос, который служит для подачи маслакх трущимся поверхностям движущихся частей двигателя. По конструктивному исполнению масляные насосы бывают шстерёнчатые и винтовые. Шестеренчатые насосы отличаются простотой устройства, компакт-ностью, надежностью в работе и являются наиболее распространенными в автомобильных и тракторных двигателях. Расчет масляного насоса заключается в определении размеров его шестерен. Этому расчету предшествует определение циркуляционного расхода масла в системе.

    Циркуляционный расход масла зависит от количества отводимой им от двигателя теплоты. В соответствии с данными теплового баланса величина ‚ (кДж/с) для современных автомобильных и тракторных двигателей составляет 1,5 - 3,0% от общего количества теплоты, введенной в двигатель с топливом: Qм= (0,015 0,030)Q0

    Количество теплоты, выделяемой топливом в течение 1 с: Q0= НuGт/3б00, где Нu выражено в кДж/кг; Gт - в кг/ч.

    Циркуляционньтй расход масла (м3/с) при заданной величине ‚ Vд=Qм/(рмсм ) (19.2)