Установка бесконтактной системы зажигания. Как переделать контактный трамблер на бесконтактный и зачем Бесконтактной системы зажигания автомобиля

Электронная система искрообразования появилась лишь на последних модификациях заднеприводной «классики» ВАЗ 2106. До середины 90-х годов указанные автомобили оснащались зажиганием с механическим прерывателем, весьма ненадёжным в работе. Проблема решается относительно легко - владельцы устаревших «шестёрок» могут приобрести комплект бесконтактного зажигания и самостоятельно установить на машину, не обращаясь к мастерам - электрикам.

Устройство электронного зажигания ВАЗ 2106

Бесконтактная система (сокращённо - БСЗ) «Жигулей» включает шесть устройств и деталей:

  • основной распределитель импульсов зажигания - трамблёр;
  • катушка, вырабатывающая высокое напряжение для искры;
  • коммутатор;
  • соединительный шлейф проводов с разъёмами;
  • кабели высокого напряжения с усиленной изоляцией;
  • свечи зажигания.

От контактной схемы БСЗ унаследовала лишь высоковольтные кабели и свечи. Невзирая на внешнее сходство со старыми деталями, катушка и трамблёр конструктивно отличаются. Новые элементы системы - управляющий коммутатор и жгут проводов.

Катушка, работающая в составе бесконтактной схемы, отличается по числу витков первичной и вторичной обмотки. Проще говоря, она мощнее старой версии, поскольку рассчитана на создание импульсов 22-24 тыс. вольт. Предшественница выдавала на электроды свечей максимум 18 кВ.

Пытаясь сэкономить на установке электронного зажигания, один мой товарищ заменил трамблёр, но подключил коммутатор к старой катушке «шестёрки». Эксперимент завершился неудачей - перегорели обмотки. В результате все равно пришлось купить катушку нового типа.

Шлейф с разъёмами служит для надёжного соединения клемм распределителя зажигания и коммутатора. Устройство этих двух элементов стоит рассмотреть отдельно.

Бесконтактный трамблёр

Внутри корпуса распределителя располагаются следующие детали:

  • вал с площадкой и бегунком на конце;
  • опорная пластина, поворачивающаяся на подшипнике;
  • магнитный датчик Холла;
  • на валу закреплён металлический экран с просветами, вращающийся внутри зазора датчика.

Снаружи на боковой стенке установлен вакуумный блок опережения зажигания, связанный с опорной площадкой посредством тяги. Сверху на защёлках закреплена крышка, куда подсоединяются кабели от свечей.

Основное отличие данного трамблёра - отсутствие механической контактной группы. Роль прерывателя здесь играет электромагнитный датчик Холла, реагирующий на прохождение сквозь зазор металлического экрана.

Когда пластина перекрывает магнитное поле между двумя элементами, прибор бездействует, но как только в щели открывается просвет, датчик генерирует постоянный ток. Как распределитель работает в составе электронного зажигания, читайте ниже.

Управляющий коммутатор

Элемент представляет собой плату управления, защищённую пластиковой крышкой и прикреплённую к алюминиевому радиатору охлаждения. В последнем сделаны 2 отверстия для монтажа детали к кузову автомобиля. На ВАЗ 2106 коммутатор располагается внутри подкапотного пространства на правом лонжероне (по ходу движения машины), рядом с расширительным бачком охлаждающей жидкости.

Главные функциональные детали электронной схемы - мощный транзистор и контроллер. Первый решает 2 задачи: усиливает сигнал, поступающий от трамблёра, и управляет работой первичной обмотки катушки. Микросхема выполняет следующие функции:

  • отдаёт команды транзистору разрывать цепь катушки;
  • создаёт в цепи электромагнитного датчика опорное напряжение;
  • считает обороты двигателя;
  • защищает цепь от высоковольтных импульсов (свыше 24 В);
  • корректирует угол опережения зажигания.

Коммутатор не боится изменения полярности, если автолюбитель ошибочно перепутает плюсовой провод с «массой». В схеме присутствует диод, закрывающий линию в подобных случаях. Контроллер не перегорит, а попросту перестанет функционировать - искра на свечах не появится.

Схема и принцип работы БСЗ

Все элементы системы связаны между собой и с двигателем следующим образом:

  • вал трамблёра вращается от приводной шестерни мотора;
  • установленный внутри распределителя датчик Холла подключён к коммутатору;
  • катушка соединяется линией низкого напряжения с контроллером, высокого - с центральным электродом крышки трамблёра;
  • высоковольтные провода от свечей зажигания подключаются к боковым контактам крышки главного распределителя.

Резьбовой зажим «К» на катушке соединён с плюсовым контактом реле замка зажигания и клеммой «4» коммутатора. Второй зажим с маркировкой «К» связан с контактом «1» контроллера, сюда же приходит провод тахометра. Клеммы «3», «5» и «6» коммутатора служат для подключения датчика Холла.

Алгоритм работы БСЗ на «шестёрке» выглядит так:

  1. После поворота ключа в замке напряжение подаётся на электромагнитный датчик и первую обмотку трансформатора. Вокруг стального сердечника возникает магнитное поле.
  2. Стартер вращает коленвал двигателя и привод распределителя. Когда между элементами датчика проходит прорезь экрана, образуется импульс, посылаемый коммутатору. В этот момент один из поршней находится близко к верхней точке.
  3. Контроллер посредством транзистора размыкает цепь первичной обмотки катушки. Тогда во вторичной образуется кратковременный импульс величиной до 24 тыс. вольт, идущий по кабелю к центральному электроду крышки трамблёра.
  4. Пройдя через подвижный контакт - бегунок, направленный в сторону нужной клеммы, ток поступает на боковой электрод, а оттуда - по кабелю к свече. В камере сгорания образуется вспышка, топливная смесь возгорается и толкает поршень вниз. Двигатель заводится.
  5. Когда следующий поршень достигает ВМТ, цикл повторяется, только искра передаётся другой свече.

Для оптимального сгорания топлива в процессе работы мотора вспышка в цилиндре должна происходить на долю секунды раньше, чем поршень окажется в максимальном верхнем положении. Для этого в БСЗ предусматривается опережение искрообразования на определённый угол. Его величина зависит от оборотов коленчатого вала и нагрузки на силовой агрегат.

Корректировкой угла опережения занимается коммутатор и вакуумный блок трамблёра. Первый считывает количество импульсов от датчика, второй действует механически от разрежения, подведённого со стороны карбюратора.

Видео: отличия БСЗ от механического прерывателя

Неисправности бесконтактной системы

По надёжности работы БСЗ существенно превосходит устаревшее контактное зажигание «шестёрки», проблемы возникают гораздо реже и проще диагностируются. Признаки неисправности системы:

  • полный отказ - мотор глохнет и больше не заводится;
  • неравномерный холостой ход, выстрелы в карбюратор при резком нажатии педали газа;
  • перебои и пропуски циклов во время езды.

Чаще всего встречается первый признак - отказ двигателя, сопровождающийся отсутствием искры. Распространённые причины неполадки:

Высоковольтная катушка приходит в негодность крайне редко. Симптомы аналогичные - полное отсутствие искры и «мёртвый» мотор.

Поиск «виновника» ведётся способом последовательных замеров в разных точках. Включите зажигание и с помощью вольтметра проверьте напряжение на датчике Холла, контактах трансорфматора и клеммах коммутатора. Ток должен подаваться на первичную обмотку и 2 крайних контакта электромагнитного датчика.

Для проверки контроллера знакомый автоэлектрик предлагает использовать одну из его функций. После включения зажигания коммутатор подаёт ток на катушку, но если вращение стартера не последует, напряжение исчезает. В этот момент и нужно делать замер с помощью прибора либо контрольной лампочки.

Неисправность датчика Холла диагностируется так:


Когда двигатель работает с перебоями, нужно проверять целостность проводки, загрязнённость клемм коммутатора либо высоковольтные провода на предмет пробоя изоляции. Иногда случается запаздывание сигнала коммутатора, вызывающее провалы и ухудшение разгонной динамики. Рядовому владельцу ВАЗ 2106 обнаружить такую неполадку довольно сложно, лучше обратиться к мастеру - электрику.

Современные контроллеры, используемые на бесконтактном зажигании «шестёрки», перегорают довольно редко. Но если проверка датчика Холла дала отрицательный результат, то методом исключения попытайтесь заменить коммутатор. Благо, цена новой запчасти не превышает 400 руб.

Видео: как проверить исправность коммутатора

Монтаж БСЗ на ВАЗ 2106

Выбирая комплект бесконтактного зажигания, обратите внимание на объем двигателя вашей «шестёрки». Вал трамблёра под мотор 1,3 литра должен быть на 7 мм короче, чем для более мощных силовых агрегатов 1,5 и 1,6 л.

Чтобы установить БСЗ на автомобиль ВАЗ 2106, следует подготовить такой набор инструментов:

  • ключи рожковые либо накидные размерами 7-13 мм;
  • отвёртки с плоским и крестообразным шлицем;
  • плоскогубцы;
  • дрель со сверлом 4 мм (для крепления электронного блока в лонжероне придётся сделать 2 отверстия под саморезы).

Очень рекомендую приобрести накидной ключ 38 мм с длинной рукояткой для откручивания храповика. Стоит недорого, в пределах 150 руб., пригодится во многих ситуациях. С помощью данного ключа легко поворачивать коленчатый вал и выставлять метки шкива для настройки зажигания и ГРМ.

Первым делом нужно демонтировать старую систему - главный распределитель и катушку:

  1. Вытащите из гнёзд крышки трамблёра высоковольтные провода и отсоедините её от корпуса, разблокировав защёлки.
  2. Поворачивая коленвал, выставьте бегунок под углом примерно 90° к мотору и поставьте напротив метку на клапанной крышке. Открутите гайку 13 мм крепления распределителя к блоку.
  3. Раскрутите зажимы старой катушки и отсоедините провода. Распиновку желательно запомнить или зарисовать.
  4. Ослабьте и выверните гайки крепления хомута, снимите катушку и трамблёр с автомобиля.

Извлекая распределитель зажигания, сохраните прокладку в виде шайбы, установленную между площадкой детали и блоком цилиндров. Она может пригодиться для бесконтактного трамблёра.

Перед монтажом БСЗ стоит проверить состояние кабелей высокого напряжения и свечей. Если сомневаетесь в работоспособности указанных деталей, лучше сразу их поменяйте. Исправные свечи необходимо почистить и выставить зазор 0,8-0,9 мм.

Установку бесконтактного комплекта выполняйте по инструкции:

  1. Снимите крышку распределителя БСЗ, при необходимости переставьте уплотнительную шайбу со старой запчасти. Поверните бегунок в нужное положение и вставьте вал трамблёра в гнездо, площадку слегка прижмите гайкой.
  2. Наденьте крышку, зафиксировав защёлки. Подсоедините кабели свечей согласно нумерации (цифры указаны на крышке).
  3. Прикрутите катушку бесконтактной системы к кузову ВАЗ 2106. Чтобы клеммы «Б» и «К» стояли в исходном положении, предварительно разверните корпус изделия внутри крепёжного хомута.
  4. Наденьте на контакты провода от замка зажигания и тахометра согласно приведённой выше схеме.
  5. Рядом на лонжероне установите контроллер, просверлив 2 отверстия. Для удобства снимите расширительную ёмкость.
  6. Подключите жгут проводов к трамблёру, коммутатору и трансформатору. Жила синего цвета подводится к клемме «Б» катушки, коричневого - к контакту «К». Поставьте высоковольтный кабель между крышкой распределителя и центральным электродом трансформатора.

Если в процессе монтажа обошлось без досадных ошибок, автомобиль заведётся сразу. Зажигание можно подстроить «на слух», отпустив гайку трамблёра и медленно поворачивая корпус на холостых оборотах двигателя. Добейтесь наиболее стабильной работы мотора и затяните гайку. Монтаж окончен.

Видео: инструкция по установке бесконтактного оборудования

Установка момента зажигания

Если вы перед разборкой забыли поставить риску на клапанной крышке либо не совместили метки, момент искрообразования придётся настроить заново:

  1. Выверните свечу первого цилиндра и сбросьте крышку главного распределителя.
  2. Вставьте в свечной колодец длинную отвёртку и поворачивайте коленчатый вал за храповик ключом по часовой стрелке (если смотреть спереди машины). Цель - найти ВМТ поршня, который максимально вытолкнет отвёртку из колодца.
  3. Ослабьте гайку, прижимающую трамблёр к блоку. Вращая корпус, добейтесь, чтобы в зазоре датчика Холла оказалась одна из прорезей экрана. При этом подвижный контакт бегунка должен чётко совместиться с боковым контактом «1» на крышке трамблёра.
  4. Подтяните гайку крепления распределителя, установите крышку и свечу, потом запускайте мотор. Когда он прогреется до 50-60 градусов, корректируйте зажигание «на слух» или по стробоскопу.

Внимание! Когда поршень 1 цилиндра становится в верхнее положение, насечка шкива коленвала должна совпасть с первой длинной риской на крышке узла ГРМ. Изначально нужно обеспечить угол опережения 5°, поэтому выставляйте метку шкива напротив второй риски.

Аналогичным образом выполняется настройка по лампочке, подключаемой к массе авто и низковольтной обмотке катушки. Момент зажигания определяется по вспышке лампы, когда срабатывает датчик Холла, а транзистор коммутатора размыкает цепь.

Случайно оказавшись на оптовом рынке автомобильных запчастей, я приобрёл недорогой стробоскоп. Этот прибор сильно упрощает настройку зажигания, показывая положение насечки шкива при работающем двигателе. Стробоскоп подключается к трамблёру и даёт вспышки одновременно с образованием искры в цилиндрах. Направляя лампу на шкив, вы видите позицию метки и её изменение при увеличении оборотов.

Видео: регулировка зажигания «на слух»

Свечи для электронного зажигания

При установке БСЗ на автомобиль модели ВАЗ 2106 желательно подобрать и поставить свечи, оптимально подходящие для электронного зажигания. Наряду с российскими запчастями допускается применение импортных аналогов от известных брендов:

  • рекомендуемые производителем оригинальные свечи - А17ДВР (М);
  • NGK - BCPR6ES-9, BPR6ES-9;
  • Bosch - FR7DCU, WR7DC;
  • Brisk - DR15YC, LR15YC;
  • Beru - 14FR-7DU, 14R-7DU.

Буква М в маркировке отечественной детали обозначает обмеднение электродов. В продаже имеются комплекты А17ДВР без медного покрытия, вполне подходящие для БСЗ.

Зазор между рабочими электродами свечи выставляется в пределах 0,8-0,9 мм с помощью плоского щупа. Превышение либо уменьшение рекомендуемого просвета ведёт к падению мощности двигателя и увеличению расхода бензина.

Установка системы бесконтактного искрообразования заметно улучшает эксплуатационные характеристики карбюраторных «Жигулей», оборудованных задним приводом. Ненадёжные, вечно подгорающие контакты доставляли массу хлопот владельцам «шестёрок». В самые неподходящие моменты прерыватель приходилось зачищать, пачкая руки. Первое электронное зажигание появилось на переднеприводных моделях «восьмого» семейства, а затем перекочевало на ВАЗ 2101–2107.

Бесконтактная система зажигания является конструктивным продолжение контактно-транзисторной системы зажигания. В данной системе зажигания контактный прерыватель заменен бесконтактным датчиком. Бесконтактная система зажигания стандартно устанавливается на ряде моделей отечественных автомобилей, а также может устанавливаться самостоятельно вместо контактной системы зажигания.

Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.

Конструктивно бесконтактная система объединяет ряд элементов, среди которых источник питания, выключатель зажигания, датчик импульсов, транзисторный коммутатор, катушка зажигания , распределитель и конечно свечи зажигания . Распределитель соединен со свечами и катушкой зажигания с помощью проводов высокого напряжения.

В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания , за исключением датчика импульсов и транзисторного коммутатора.

Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов: Холла, индуктивный и оптический.

Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора).

Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.

Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя .

Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.

Принцип работы бесконтактной системы зажигания

При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.

При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания.

При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.

Хоть и прогресс шагнул далеко вперед, все же осталось немало приверженцев классических моделей ВАЗ. К таким автомобилям можно отнести и старенькую копейку, которая давно уже снята с производства, и более современные, но так же уже не выпускаемые модели 2104 – . В этой статье речь пойдет о том, как контактное зажигание на бесконтактное (электронное) и действительно ли есть прок от такой замены.


Зачем же нужна замена ?

В Сети на различных автомобильных форумах владельцы ведут многостраничные дебаты о преимуществах бесконтактного зажигания . И этих преимуществ действительно хватает. После установки бесконтактного зажигания работа становится ровной и мягкой. При резком разгоне автомобиля отсутствуют провалы. Существенно облегчается запуск а особенно в холодную погоду. Ну и конечно, заметная экономия топлива.

Устройство и принцип работы бесконтактного зажигания.

По сути, устройство бесконтактного зажигания не многим отличается от системы контактного зажигания . Единственными отличиями являются это отсутствие трамблера и наличием датчика импульсов с блоком транзисторного коммутатора.


Установка системы бесконтактного зажигания на ВАЗ

Для начала нужно приобрести комплект бесконтактного зажигания для . Настоятельно рекомендуем покупать бесконтактное зажигание в проверенных торговых точках. При этом стоит обратить внимание, что комплект должен соответствовать характеристикам двигателя вашего автомобиля, а длина вала трамблера не должна отличатся от длинны вала который стоит в данный момент на агрегате.


В комплект бесконтактного зажигания должны входить:

  1. трамблер
  2. катушка
  3. блок коммутации
  4. соединительные провода
  5. комплект высоковольтных проводов
  6. четыре свечи зажигания с маркировкой ДВРМ


Чтобы замена бесконтактной системы зажигания прошла успешно нужно соблюдать правильную последовательность выполнения работ. Для начала нужно снять минусовую . Затем отсоединяем провода от катушки зажигания и центральный высоковольтный провод, после чего снимаем крышку трамблера. Теперь выставляем бегунок в положение как показано на рисунке, чтобы не сбить настройки зажигания. Также нужно сделать метку на блоке, чтобы правильно выставить новый трамблер бесконтактного зажигания. Обратите внимание, что метку ставим посредине пяти прорезей на нижней части корпуса трамблера. Теперь можно открутить гайку и вынуть старый трамблер контактной системы зажигания .


Перед установкой бесконтактного зажигания открываем крышку нового трамблера и ставим бегунок в такое же положение, как и на старом, перпендикулярно двигателю. И только потом вставляем его в отверстии блока цилиндров. После чего совмещаем метку, которую сделали предварительно, и зажимаем корпус гайкой.

Затем производим сборку: одеваем крышку, подключаем высоковольтные провода.

После чего отсоединяем и снимаем старую катушку зажигания и на ее место ставим новую. Подключаем к ней другой конец центрального высоковольтного провода, а вот коричневый провод, который шел от катушки к трамблеру теперь нам не пригодится и его смело можно отложить.

Подсоединяем на свои места все высоковольтные провода. Два коричневых провода подсоединяем к новой катушке зажигания к контакту “К”, а к контакту “Б” два синих.

Теперь определяемся с местом для коммутатора (можно в районе бачка омывателя) и с помощью саморезов закрепляем его. Подсоединяем разъем, и скручиваем все провода изолентой.

После проделанных операций заведите мотор и при необходимости подкорректируйте работу бесконтактного зажигания.

Пары бензина, сгорая в цилиндрах двигателя, дают энергию для движения автомобиля. Сам по себе процесс сгорания не начинается, его инициализацию осуществляет система зажигания. С самого начала появления бензиновых моторов это производилось механическим способом. С течением времени у него было выявлено множество недостатков и замечаний в работе, в том числе сложность в эксплуатации. Появление электронных компонентов (транзисторов, тиристоров и т.д.) позволило преодолеть эти недостатки, т.к. была создана бесконтактная система зажигания (БСЗ).

Для чего оно нужно и каким бывает

Горючая смесь в цилиндрах двигателя должна воспламеняться в конце второго такта – сжатия, когда поршень располагается в верхнем положении. Здесь смесь находится под самым сильным давлением, и при рабочем ходе поршня будет совершена максимальная работа. Именно в этот момент на свече должна появиться искра, которая и воспламенит горючую смесь.
Для этого служит зажигание. Было разработано несколько различных вариантов, но на автомобиле обычно используется батарейное (контактное) зажигание.

Контактное

Как оно работает, должно быть понятно из описания к приведенному ниже рисунку.

Когда ключ вставлен в замок (Contactor), ток протекает от АКБ (Battery) через бобину или катушку зажигания (Ignition Coil) и контакты прерывателя (Contakt breaker). Этот ток образует магнитное поле, в которое попадает вторичная обмотка Ignition Coil. Когда контакты прерывателя размыкаются, через первичную обмотку прекращается протекание тока, во вторичной обмотке благодаря эффекту самоиндукции создается высоковольтное напряжение, подаваемое через распределитель (Distributor) на нужную свечу (spark plugs).

При поступлении этого напряжения на свечу, образуется искра, от чего воспламеняется топливная смесь . Вот примерно так работает контактная (батарейная) система зажигания (КСЗ). В том виде, как описано выше, она была создана еще для первых автомобилей. Здесь приведен только общий принцип ее работы. На самом деле, даже у старых машин, например, «классика» ВАЗ, дополнительно используется такие устройства, как вакуумный и центробежный регуляторы, дающие возможность изменять момент генерации искры в зависимости от скорости движения и нагрузки на автомобиль.

Недостатки подобной системы

Несмотря на все дополнительные устройства, описанная система зажигания, установленная на автомашины ВАЗ 2107,2016, имеет довольно серьезные недостатки. Из них следует отметить:

  1. Протекание значительного по величине тока через прерыватель, что вызывает подгорание его контактов, следствием чего будет увеличение между ними зазора. Из-за этого изменяется угол опережения зажигания (УОЗ), ухудшается пуск двигателя, снижается его мощность и экономичность. Кроме того, другие значения УОЗ могут вызвать перебои в работе мотора при повышенных оборотах (высокой скорости). Чтобы избежать этого, необходимо проводить регулярное техническое обслуживание системы.
  2. У катушки первичная обмотка входит в цепь, содержащую контакты, ограничивающие величину протекающего через них тока, что сказывается на его значении во вторичной цепи и приводит к ограничению энергии искры.
  3. При высокой скорости движения возникает так называемый «дребезг» контактов, что означает их неоднократное размыкание-замыкание, что опять же отрицательно сказывается на работе зажигания.

Тем не менее, из-за своей дешевизны и простоты КСЗ использовалась долгое время, в частности, на машинах семейства ВАЗ 2107, 2106.

Дальнейшее развитие системы зажигания

Вышеописанные трудности удалось решить с широким распространением полупроводниковых элементов, таких как транзисторы и тиристоры. Итогом их применения стала так называемая бесконтактная система зажигания. Однако ее внедрение на отечественные автомобили произошло не сразу, сначала на ВАЗ 2107, 2106 было использовано так называемое контактно-транзисторное зажигание.

Контактно-транзисторное зажигание

Функциональную схему такой системы можно увидеть ниже.


Из рисунка становится понятно, что механический прерыватель управляет не накопителем энергии, в роли которого выступает катушка зажигания, а электронным коммутатором. Такое решение облегчило режимы работы прерывателя, повысило надежность и качество работы всей системы. Кроме того, это позволило модернизировать многочисленные автомашины ВАЗ 2107, 2106, находящиеся в эксплуатации, без значительных затрат со стороны их владельцев.

Бесконтактная система зажигания

Следующим этапом в развитии системы стало исключение механического прерывателя. Бесконтактная система зажигания такого типа показана на рисунке.


Впервые в отечественном автомобилестроении подобная система была внедрена на автомобилях ВАЗ девятого семейства, хотя потом с ней серийно выпускались и ВАЗ 2107, 2106.
Такая бесконтактная система подразумевает использование коммутатора для управления катушкой зажигания и предусматривает работу коммутатора с сигналами, получаемыми от бесконтактного датчика. Последние могут быть трех типов:

  • индуктивный;
  • датчик Холла (магнитный);
  • оптический.

В отечественных машинах семейства ВАЗ 2107, 2106 используется датчик Холла.


Работа такого устройства мало чем отличается от работы обычной КСЗ. Вращение вала двигателя бесконтактный датчик преобразует в импульсы, поступающие на коммутатор напряжения. Последний обеспечивает импульсное прохождение тока через бобину. Благодаря этому во вторичной цепи возникает высоковольтное напряжение, поступающее через распределитель на свечи зажигания, между электродами возникает искра и от нее воспламеняется горючая смесь.
В процессе работы происходит регулирование УОЗ. Для этого используется центробежный (при изменении оборотов двигателя) и вакуумный (при изменении нагрузки) регуляторы.

Система зажигания, установленная на автомобиле, предназначена для своевременного воспламенения топливной смеси. Первоначально применялась контактная, но затем по мере развития электроники появилась бесконтактная система зажигания. Конечно, сейчас используются гораздо более сложные, микропроцессорные системы, но и БСЗ сыграла в свое время значительную роль в повышении качества и надежности автомобиля.

TSZi, TSZh

Принцип действия бесконтактной системы зажигания заключается в следующем: При включенном зажигании и вращающемся коленвале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Наибольшее распространение получили магнитоэлектрические датчики - индукционные(системы с ними маркируются TSZi ) и датчики Холла(системы с ними маркируются TSZh ).

Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи - может «сгореть» коммутатор или распределитель.

Прежде, давайте разберём эти два датчика, что же они представляют из себя?

Индуктивный датчик

Работа индуктивного датчика положения основана на изменении индукции чувствительного элемента при изменении зазора между ним и ферромагнитным движущимся объектом.

Ферромагнитный объект — объект, обладающий ферромагнитными свойствами(т.е. оно активно притягивает к себе магнит и активно притягивается магнитом).

В индуктивном датчике имеются катушка из обмотки провода и магнит. В качестве сопряженной детали используется ротор, состоящий из пластин определенного размера.

1 – индуктивный датчик; 2 – пластины ротора

Каждый раз, когда пластина ротора проходит около датчика импульсов, изменяется магнитное поле, в результате чего в обмотке катушки индуцируется импульсное напряжение.

Индуктивный датчик вырабатывает сигнал, близкий к синусоидальному, поэтому его приходится преобразовывать в форму, более удобную для управления током в первичной обмотке (то есть сигнал датчика искусственно преобразуется в форму, близкую к прямоугольной, увеличивается крутизна фронта и спада, обрезается верхушка импульса и т.п.).

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

Датчик состоит из постоянного магнита(2), пластины полупроводника(3) и микросхемы. Между пластинкой(3) и магнитом(2) имеется зазор(4). В зазоре датчика находится стальной экран(1) с прорезями. Когда через зазор проходит прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится тело экрана, то магнитные силовые линии замыкаются через экран и на пластинку не действуют. В этом случае разность потенциалов на пластинке не возникает.

Бесконтактные системы зажигания с индуктивным датчиком(TSZi).

1 - свечи зажигания; 2 - датчик-распределитель, 3 - коммутатор, 4 - катушка зажигания

Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора \/Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

Бесконтактные системы зажигания с датчиком Холла(TSZh)

1 - свечи зажигания; 2 - датчик-распредепитель; 3 - коммутатор; 4 - генератор; 5 - аккумуляторная батарея; 6 - монтажный блок; 7 - репе зажигания; 8 - катушка зажигания; 9 - датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

На рисунке представлена электрическая схема системы зажигания с датчиком Холла:

Стабилизация величины вторичного напряжения достигается в схеме двумя путями — во-первых, регулированием времени нахождения транзистора VT1 в открытом состоянии, т.е. времени включения первичной цепи обмотки зажигания в сеть, во-вторых, ограничением величины тока в первичной цепи величиной около 8 А. Последнее, кроме того, предотвращает перегрев катушки.

С датчика Холла на вход коммутатора приходит сигнал прямоугольной формы, величина которого приблизительно на 3 В меньше напряжения питания, а длительность, соответствует прохождению выступов экрана мимо чувствительного элемента датчика. Нижний уровень сигнала 0,4 В соответствует прохождению прорези. В момент перехода от высокого уровня к низкому происходит искрообразование.

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная.цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

Общий принцип работы:

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питаниец цепи происходит по схеме Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутит маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 — свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Электрический ток поступает на первичную обмотку катушки зажигания(6). Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке вознекате ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель. Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.