Сравнение аккумуляторов различных типов. Cвинцово-кислотные аккумуляторные батареи

  • Химия
  • Случайно узрел с комментариями к ней, и так злость во мне закипела по поводу безграмотности людей в области кислотных (свинцовых в простонародье) аккумуляторов, что не выдержал и решил написать «гикам» (чтобы быть гиком, как оказывается, мало купить дорогой телефон) краткую статью об аккумуляторах. С рассмотрением тех ошибок, которые мне постоянно мусолят глаза и вызывают праведное желание их исправить.

    Начнем с названия. Я очень часто вижу что тремя буквами А-К-Б называют все что можно зарядить, абсолютно любой аккумулятор. Особенно тремя буквами люди любят называть аккумуляторы типа Li-ion. На самом-же деле АКБ аббревиатура от Аккумуляторная Кислотная Батарея. Под ними подразумевается лишь один тип аккумулятора - свинцовый кислотный. С современной точки зрения это название вызывает некоторый когнитивный диссонанс т.к. на данный момент значение слова «батарейка» т.е. гальванического элемента который зарядить нельзя перешло на слово «батарея». И получается как будто бы из-за слова «аккумуляторная» это аккумулятор который зарядить можно, а из-за слова «батарея» это как будто батарейка которую зарядить нельзя. В реальности-же батарея - просто цепь гальванических элементов и со словом «батарейка» имеет общий лишь корень.

    Далее перейдем к некоторым мифам, а именно главный миф - АКБ для автомобиля имеет некие существенные отличия от АКБ для ИБП. И вот нельзя их применять и там и там.

    С химической точки зрения любые АКБ абсолютно одинаковы . Как-же они устроены? Очень кратко - если аккумулятор заряжен, то один электрод представляет собой свинцовую решетку с нанесенной на нее пастой из PbO 2 , второй -такую-же решетку с пастой губчатого свинца. Электролитом служит раствор серной кислоты. В процессе разряда PbO 2 восстанавливается и взаимодействуя с серной кислотой образует PbSO 4 . Свинец на другом электроде окисляется и опять-же образует PbSO 4 . В конце разрядки мы имеем обе решетчатые пластины заполненные (более или менее) сульфатом свинца. При зарядке аккумулятора происходит электролиз и из сульфата свинца вновь образуется диоксид и металлический свинец. Конечно-же, тут нужно подчеркнуть, что электроды при этом не равны и путать их полярность не стоит т.к. еще на стадии производства в намазку электродов вводятся соответствующие добавки, улучшающие их эксплуатационные свойства. При этом добавки полезные для одного электрода вредны для другого. В очень старые времена, где-то в начале прошлого века, в условиях простых аккумуляторов, вероятно, была допустима переполюсовка аккумулятора по ошибке или с какими-то целями и он какое-то время после этого работал. В том что она допустима сейчас я сомневаюсь.

    Таких ячеек в 12В аккумуляторе 6 шт, в 6В - 3 шт. и т.д. Многих вводит в заблуждение значение напряжения на аккумуляторах. Причем значений напряжения номинального, заряда, разряда. С одной стороны, аккумуляторы называются 12В (и 6В, 24В тоже есть, по-моему, даже 4В изредка встречаются) но на корпусе тех-же аккумуляторов для ИБП производитель указывает напряжение выше 13.5В.

    Например:

    Тут мы видим, что в форсированном режиме напряжение заряда может быть аж 15В.

    Все разъяснит кривая напряжения на АКБ:

    Слева мы видим напряжение для аккумулятора из 12 ячеек (24В номинальных), 6 (12В номинальных) и, самое полезное, для одной ячейки. Там-же отмечены области нежелательных напряжений при разряде/ заряде. Из кривой можно сделать выводы:

    1 Напряжение 12В, 24В и т.д. являются номинальными и показывают лишь число гальванических ячеек (путем деления на два) в батарее. Это просто название для удобства.

    2 Напряжение при заряде могут достигать 2.5 В/ ячейку что для 12В аккумулятора соответствует 15В.

    3 Напряжение заряженной батареи считается допустимым при значении 2.1-2.2 В/ячейку, что для 12В аккумулятора соответствует 12.6-13.2В.

    Теоретически, батарею можно зарядить и до значений 2.4 В/ячейку или даже немного выше, однако, такая зарядка будет негативно сказываться как на состоянии электродов, так и на концентрации электролита. Однажды, перед сдачей в утиль, я легко зарядил 12В батарею до напряжения ок. 14.5В (уже не помню точное значение).

    Итак, автор статьи с которой я начал, решил, что напряжение заряда автомобильной АКБ и АКБ от ИБП отличаются. Это неверно, у них одинаковый тип электродов и одинаковая концентрация серной кислоты в электролите (подобранная давным-давно экспериментальным путем, чтобы предоставлять максимальное напряжение и минимальном саморазряде). Однако, что-же происходит в батарее, почему ее нельзя заряжать при слишком высоком значении напряжения?

    Почему в автомобильную АКБ нужно подливать воду, а в АКБ от ИБП не нужно? Эти вопросы позволяют нам плавно перейти в область напряжения разложения воды. Как я написал выше, при зарядке аккумулятора происходит электролиз. Однако, не весь ток расходуется на превращение PbSO 4 в PbO 2 и Pb. Часть тока будет неизбежно расходоваться и на разложение воды, составляющей значительную часть электролита:

    2H 2 O = 2H 2 + O 2

    Теоретический расчет дает значение напряжения для этой реакции ок. 1.2В. Напоминаю, что напряжение на ячейке при заряде заведомо более 2В. К счастью, активно вода начинает разлагаться только выше 2В, а в промышленности для получения водорода и кислорода из нее процесс ведут и вовсе при 2.1-2.6В (при повышенной температуре). Как бы то ни было, тут мы приходим к выводу, что в конце процесса заряда АКБ будет неизбежно происходить процесс разложения воды в электролите на элементы. Образующиеся кислород и водород попросту улетучиваются из сферы реакции. Про них бытуют следующие мифы:

    1. Водород крайне взрывоопасен! Перезарядишь аккумулятор и как минимум лишишься комнаты где тот был!

    На самом деле, водорода в процессе электролиза выделяется ничтожно мало по сравнению с объемом комнаты. Водород взрывается при концентрации от 4% в воздухе. Если мы допустим, что электролиз ведется в комнате размером 3*3*3 метра или 27 метров куб., то нам понадобится наполнить помещение 27*0.04=1.1 метров куб. водорода. Для получения такого количества H2 нужно было бы полностью разложить ок. 49 моль воды или 884 грамма ее. Если кто-то наблюдал электролиз, то поймет насколько это много. Или попробуем перейти ко времени. При силе тока в стандартной зарядке для крупногабаритных АКБ в 6А, уравнение Фарадея дает время, необходимое для получения этого количества водорода, аж 437 часов или 18.2 дня. Чтобы наполнить комнату водородом до взрывоопасной концентрации нужно забыть про зарядку на 2 с половиной недели! Но даже если это случится, концентрация серной кислоты просто будет расти пока ее раствор не приобретет слишком высокое сопротивление для жалких 12В зарядки и сила тока не станет ничтожной. Да и водород попросту улетучится.

    Очень редко случаются взрывы непосредственно в корпусах крупногабаритных АКБ из-за того, что выделяющийся водород по какой-то причине не может покинуть замкнутого пространства. Но и в этом случае нечего страшного не бывает - чаще всего взрыва хватает только на небольшую деформацию верхней части корпуса, но не на разрыв свинцовых соединений. И АКБ еще может работать дальше даже после таких повреждений.

    2. При электролизе может образоваться смертельно ядовитый и, не менее взрывоопасный чем водород, сероводород!

    Не наш, периодически попадался миф в англоязычных постах. Теоретически конечно возможно подать такое большое напряжение и создать т.о. такую большую силу тока, что на катоде начнется процесс восстановления сульфат-иона. Напряжение для этого будет достаточным, а продукты восстановления не будут успевать диффундировать подальше от электрода и восстановление будет идти дальше. Но зарядка в пределах десятка-трех вольт и с ограничением силы тока в 6А на такое едва ли способна. Однажды, я наблюдал процесс восстановления сульфата до SO 2 , да, это возможно; однокурсницы по ошибке что-то сделали не то во время опыта. Но это большая редкость т.к. там концентрация серной кислоты была заметно выше той, что используется в АКБ, была иная конструкция электрода и иной его материал и, естественно, напряжения и сила тока были были непомерными. И SO 2 не H 2 S.

    3. При электролизе мышьяк и сурьма из материала решеток будут восстанавливаться до ядовитых арсина и стибина!

    Действительно, решетки содержат относительно много сурьмы, мышьяка в современных решетках, вероятно, нет вообще. При работе АКБ та решетка на которой происходит восстановление, т.е. катод, разрушению не может подвергаться. Выделяйся даже каким-то образом стибин, он бы тут-же взаимодействовал с PbSO4, восстанавливая его до металла.

    Однако, некоторая практическая неприятность тут есть. Газообразные водород и кислород могут увлекать за собой капельки электролита, создавая аэрозоль серной кислоты. Аэрозоль серной кислоты, даже концентрированной, для человека не опасен и просто вызывает кашель. Однако, серная кислота - кошмар для тканей и бумаги. Стоит даже небольшому количеству серной кислоты попасть на одежду и там обязательно появятся дырки или ткань разорвется по этому месту. Через недели, если кислоты много, через месяц, но одежда истлеет.

    Так что газовыделения опасаться не стоит с бытовой точки зрения или стоит, но нужно ориентироваться именно на аэрозоль серной кислоты.

    Итак, вода начала разлагаться на водород кислород, ее в электролите становится все меньше, что-же дальше? Если это АКБ в котором электролит просто налит в виде слоя жидкости, то начнется повышение саморазряда из-за повышения концентрации серной кислоты. Занятно, что это будет сопровождаться небольшим повышением напряжения (концентрация кислоты растет) на ячейке. Именно поэтому автовладельцы должны постоянно контролировать концентрацию серной кислоты в своих АКБ (при помощи ареометра) и доливать туда воду. Процедура доливания воды - необходимая часть процесса обслуживания любой АКБ. Кроме одного их типа, и мы сейчас об этом поговорим.

    Иметь аккумулятор в котором болтается слой едкой, по отношению к металлам, жидкости конечно-же неудобно, а потому попытки избавиться непосредственно от жидкости предпринимались давно, начались чуть ли не в первой половине 20-го века. К слову сказать, не то чтобы слой серной кислоты прямо плескался вокруг электродов. В реальности она неплохо распределена между электродами и окружающими их сепараторами даже в дешевых моделях. Итак, первым вариантом было использование стекловолокна. Достаточно просто окружить электроды стекловолокном которое пропитано серной кислотой и большинство проблем решится. Этот тип АКБ носит название AGM (absorbent glass mat) и таких АКБ для ИБП подавляющее большинство. Хотя такие АКБ малого форм-фактора и зачастую позиционируются как те, которые можно эксплуатировать в любом положении, с этим нельзя вполне согласиться. Вскрытие крышки стандартного дешевого AGM аккумулятора показывает, что никаких особых крышек там нет, а следовательно, электролит от вытекания удерживают лишь капиллярные силы. Я почти уверен, что если погонять AGM аккумулятор перевернутым вверх дном, то уже после одной зарядки из него польется серная кислота под давление газов.

    Второй распространенный тип интереснее, это т.н. гелевые АКБ. А получаются они благодаря следующему. Если подкислять растворимые силикаты, то будет происходить выделение кремневой кислоты:

    Na 2 SiO 3 + H 2 SO 4 = Na 2 SO 4 + SiO 2 + H 2 O

    Если исходный раствор силиката не отличается качеством, то кремневая кислота будет выделяться в виде стекловидной массы, но если он достаточно чист, то кремневая кислота осадится в виде красивого куска однородного полупрозрачного геля. На этом и основан способ получения гелевых АКБ - простое добавление силикатов к электролиту вызывает его затвердение в гелеобразную массу. Соответственно, вытекать оттуда уже нечему и АКБ действительно можно эксплуатировать в любом положении. Сам по себе процесс образования геля не повышает емкости АКБ и не улучшает его качеств, однако, производители его используют при производстве наиболее качественных моделей, а потому эти АКБ отличаются высоким качеством и большей емкостью. Занятно, что в обоих случаях носителем электролита является SiO2 в той или иной форме.

    Оба типа АКБ объединяются в славный тип VRLA - valve-regulated lead-acid battery который и применяется в ИБП. Формально они считаются необслуживаемыми и терпящими эксплуатацию в любом положении, но это не совсем так. Более того, многие уже встречались с эффектом, когда буквально несколько мл воды возвращают к жизни, казалось бы, дохлую АКБ от ИБП. Так получается, потому что и эти аккумуляторы не капли не застрахованы от электролиза воды в электролите, а следовательно, и пересыхания. Все происходит точно так-же, как в крупногабаритных АКБ. А вот самые дорогие и крутые необслуживаемые АКБ содержат катализатор для рекомбинации выделяющихся газов обратно в воду и вот уже у них корпус действительно выполнен абсолютно герметичным. Обращаю внимание, что по-настоящему герметичным и необслуживаемым может быть и аккумулятор типа AGM и GEL, но они-же могут ими и не быть и не содержать катализатора рекомбинации кислорода и водорода. Тогда, несмотря на казалось бы продвинутую конструкцию, пользователю придется либо чаще покупать новые аккумуляторы, либо доливать воду при помощи шприца.

    Хотелось бы добавить несколько слов о режимах разряда. Производители АКБ указывают какой ток максимально допустим для той или иной модели, но нужно понимать, что аккумулятор - просто смесь химических веществ и ЭДС генерируется исключительно химическим путем. Это не конденсатор который, по электрогидравлической аналогии, можно сравнить с неким механическим сосудом (с гибкой мембраной). Хотя АКБ могут выдавать очень большие значения силы тока, в реальности они лучше всего эксплуатируются как раз при небольших токах, что в разряде, что в заряде. Поэтому ИБП, рассчитанные на заряды небольших АКБ, при работе с крупногабаритными будут заряжать их в наиболее щадящем режиме. Впрочем, в течении далеко не одних суток. Интересно обратить внимание на то, что чем выше мощность ИБП, тем больше аккумуляторов последовательно предпочитает собирать производитель. Тут все логично - большие токи разряда маленькие АКБ выдерживают очень плохо.

    Подводя итоги:

    1. Малогабаритные и крупногабаритные АКБ идентичны по устройству.

    2. Для подавляющего большинства АКБ любого размера доливание воды является необходимой частью текущего обслуживания.

    3. Лишь немногие из дорогих моделей АКБ содержат механизм рекомбинации газов и могут быть названы действительно необслуживаемыми.

    4. Сам по себе водород, который выделяется при заряде (а это равно постоянной работе в ИБП) АКБ, не является существенной угрозой или проблемой.

    5. Нужно очень внимательно работать с АКБ, тщательно избегая пролива даже малейших капель электролита, или лишитесь одежды.

    6. Разряд и заряд малыми токами являются наиболее предпочтительными режимами эксплуатации АКБ.

    Кислотные аккумуляторы характеризуются повышенным параметром стойкости. По конструкции устройства довольно сильно отличаются. Емкость кислотного аккумулятора всегда указана в инструкции. На рынке представлены модификации на 2 и 4 вывода. Показатель саморазряда у них может отличаться.

    Электролит в устройствах чаще всего применяется серии КС. Выходное напряжение, как правило, не превышает 10 В. Для того чтобы более подробно разобраться в указанном вопросе, надо рассмотреть устройство кислотного аккумулятора.

    Устройство аккумуляторной батареи

    Стандартный аккумулятор средней емкости состоит из блока, герметичной оболочки, пластин, электролита, а также клемм. Крышки в устройствах производятся с выходным контактами. Пластины у моделей фиксируются на стойках. Некоторые модификации производятся с клапанами. Если рассматривать аккумуляторы с высокой емкостью, то у них имеется сепаратор. Указанный элемент устанавливается с перемычкой. Как правило, минусовые выводы соединяются с платинами напрямую. Непосредственно блок батареи обрабатывается каучуком.

    Модификации с емкостью 8 Ач

    Аккумуляторы кислотные (необслуживаемые) данного типа используются часто для компрессоров на 2 кВт. Частота в данном случае равняется минимум 30 Гц. Электролит в устройствах применяется разных серий. Проводимость напряжения у них отличается. Показатель перегрузки батарей в среднем равняется 40 А.

    У некоторых модификаций установлена система защиты от перегрева. Если рассматривать устройства на две клеммы, то у них имеются проводные пластины. Сепаратор, как правило, устанавливается в нижней части блока. Камера у моделей обрабатывается смолой. Показатель герметичности в среднем колеблется в районе 85 %. Параметр саморазряда, как правило, не превышает 0.2 %.

    Допустимый уровень температуры зависит от электролита. Для приводов указанные аккумуляторы подходят плохо. Также важно отметить, что современные устройства производятся с блоками рекомбинации. Процесс восстановления у них много времени не отнимает. Однако важно отметить, что стоят они на рынке довольно много.

    Модели на 20 Ач

    20 Ач производятся под приводные устройства. Также модели подходят для освещения местности. На рынке представлены модификации на 2 и 4 клеммы. Перемычки в устройствах используются с различной проводимостью. Электролит чаще сего применяется с маркировкой КС202. Заряд устройства осуществляется при напряжении в 10 В. Пластины в данном случае устанавливаются в вертикальном положении.

    По степени герметичности устройства довольно сильно отличаются. Блоки рекомбинации установлены не во всех модификациях. Для компрессоров малой мощности устройства подходят плохо. Параметр допустимой температуры у батарей в среднем равняется 40 градусов. Сепараторы чаще всего используются коммутируемого типа. У некоторых модификаций выходное напряжение достигает 15 В. Параметр порогового сопротивления находится в пределах 18 Ом. Срок службы устройств колеблется от 3 до 10 лет.

    с емкостью 50 Ач

    Аккумуляторные батареи указанной емкости используются для компрессоров на 6 кВт. В данном случае устройства выпускаются с пластинами из свинца. Многие модификации оснащаются проводными сепараторами. Положительный выход в устройствах устанавливается на крышке. Модификации с двумя клеммами обладают проводимостью на уровне 3 мк. Клапана у моделей, как правило, находятся в нижней части блока. Выходное напряжение у моделей составляет около 13 В.

    Система защиты от перегрузок используется второй либо третей степени. Герметичность блоков в среднем составляет 90 %. осуществляется при напряжении в 4 В. Допустимый уровень температуры, как правило, не превышает 45 градусов. По плотности энергии модификации довольно сильно отличаются. Для приводных устройств модели не подходят. Диоксидные пластины в них устанавливаются редко.

    Устройства на 100 Ач

    Кислотные аккумуляторы на 100 Ач производятся для контрольных блоков. Для облуживания генераторов и котлов модификации подходят отлично. Допустимая температура устройств в среднем равняется 35 градусов. Современные батареи производятся с четырьмя пластинами. Система защиты от перегрузок имеется не во всех модификациях.

    Уровень внутреннего сопротивления, как правило, не превышает 30 Ом. По герметичности устройства довольно сильно отличаются. колеблется от 5 до 10 лет. В среднем параметр проводимости у них равняется 3 мк. Выходное напряжение, в свою очередь, составляет не менее 15 В. Электролит в устройствах используется серии КС200. Для силового оборудования батареи применяются часто. Клапана, как правило, соединены с положительными выходами.

    Модели с емкостью 120 Ач

    Кислотные аккумуляторы на 120 Ач имеют высокую плотность энергии. В среднем проводимость у них равняется 3 мк. Показатель выходного напряжения зависит от размеров пластин. Многие модификации производятся с четырьмя клеммами. Для компрессоров на 5 кВт устройства подходят замечательно. Крышки у моделей используются герметичного типа. Допустимая температура батарей составляет около 40 градусов. Для приводов низкочастотного типа устройства подходят плохо.

    Параметр герметичности, как правило, не превышает 80 %. Кислотные аккумуляторы для фонарей со свинцовыми пластинами встречаются не часто. По параметру саморазряда модели отличаются. В данном случае многое зависит от чувствительности сепаратора. Плюсовые выводы в устройствах, как правило, находятся на крышке. Плотность энергии аккумуляторных батарей - в пределах 3 %.

    Аккумуляторные батареи на 150 Ач

    Кислотные аккумуляторы на 150 Ач производятся с проводными сепараторами. Некоторые модификации оснащаются коммутируемыми клапанами. Пластины чаще всего изготовлены из свинца. В среднем показатель проводимости не превышает 3 мк. Выходное напряжение модификаций зависит от чувствительности сепаратора. Срок службы моделей колеблется от 3 до 10 лет.

    Электролит в устройствах чаще всего применяется серии КС200. Плотность энергии - около 3 %. Блоки рекомбинации встречаются редко. Для компрессоров на 10 кВт устройства подходят замечательно. Однако важно отметить, что у некоторых моделей отсутствует выходной клапан. Показатель герметичности находится в пределах 90 %. Однако в данном случае многое зависит от торговой марки.

    Восстановление устройств

    Восстановление кислотных аккумуляторов осуществляется при помощи зарядных устройств. Указанные приборы выпускаются различной чувствительности. Параметр перегрузки в среднем равняется 20 А. Чтобы ускорить восстановление кислотных аккумуляторов используются триггеры с переходниками. Если рассматривать батареи малой емкости, то у них зарядка в среднем занимает 2 часа. Однако в данном случае важно учитывать параметры модели. Аккумуляторные батареи на 120 Ач восстанавливаются около 10 часов при среднем напряжении.

    Зарядные устройства Pulso BC-15860

    Зарядные устройства данной серии хорошо подходят для аккумуляторных батарей емкостью до 20 Ач. Расширитель у модели применяется аналогового типа. Параметр проводимости, как правило, не превышает 3 мк. В среднем рабочая частота составляет 35 Гц. Система защиты от импульсных скачков имеется. Восстановление батарей занимает не более двух часов. Обкладка у данного зарядного устройства отсутствует. Всего в комплекте имеется два зажима. Стабилитрон у зарядного устройства указанной серии отсутствует. Если работать с батареями на 15 Ач, то выходное напряжение следует выбирать 10 В.

    Особенности зарядных устройств Pulso BC-15855

    Зарядные устройства представленной серии производятся с двумя зажимами. Для аккумуляторных батарей на 50 Ач модель подходит хорошо. Параметр выходного напряжения у модификации регулируется контроллером. Расширитель в устройстве применяется лучевого типа. имеет высокую проводимость, и сбои в системе происходят не часто. Защита от импульсных скачков есть.

    Преобразователь в данном случае отсутствует. Для аккумуляторных батарей на100 Ач устройство не подходит однозначно. Демпфер у модификации применяется переменного типа. Параметр чувствительности в среднем составляет 4 мВ. В свою очередь показатель перегрузки не превышает 50 А. С моделями на две клеммы зарядное устройство для кислотных аккумуляторов работать может.

    Параметры зарядных моделей Lavita 192204

    Зарядное устройство представленной серии состоит и проводного расширителя. Триггер в данном случае используется электродного типа. Также важно отметить, что у модели имеется преобразователь. Зажимы установлены с фиксаторами и соединены в устройстве с выпрямителем.

    Параметр проводимости модификации равняется не менее 4 мк. Перегрузка системы в среднем составляет 30 А. Для аккумуляторных батарей на 100 Ач устройство подходит замечательно. Процесс зарядки в среднем времени занимает не более 5 часов. Стабилизатор используется с фильтром. Система защиты от импульсных скачков отсутствует.

    Зарядные устройства Lavita 192212

    Зарядное устройство указанной серии имеет массу преимуществ. В первую очередь важно отметить, что у модификации используется два фильтра. Расширитель стандартно установлен проводного типа. Преобразователь у зарядного устройства производителем не предусмотрен. Параметр перегрузки системы, как правило, составляет 33 А. Выпрямитель применяется с обкладкой. Для аккумуляторных батарей на 150 Ач устройство подходит хорошо. Импульсные скачки в системе наблюдаются редко. Стабилитрон применяется регулируемого типа.

    Особенности зарядных устройств TESLA ЗУ-10642

    Зарядные устройства указанной серии производятся с двумя расширителями. Преобразователь у них используется коммутируемого типа. В среднем проводимость модели составляет 3 мк. Для аккумуляторных батарей на 10 Ач устройство подходит замечательно. Параметр пороговой чувствительности в устройстве невысокий. Проблемы с перегрузками наблюдаются очень редко. Система защиты от скачков есть. Фильтр у зарядки используется на 12 В.

    Для аккумуляторных батарей на две клеммы устройство подходит. В данном случае выходное напряжение можно регулировать. Держатели в устройствах применяются довольно широкие. Непосредственно ручка в комплекте есть. Регулятор у зарядки применяется поворотного типа. Зажимы используются без фиксаторов. Для аккумуляторов на 100 Ач устройство не подходит. Показатель перегрузки в среднем составляет 33 А. Для моделей на четыре клеммы модификация не подходит.

    Параметры зарядных моделей Deltran

    Указанное зарядное для кислотных аккумуляторов производится с выпрямителем. Триггер применяется с фильтрами. Для аккумуляторных батарей на 10 Ач устройство подходит хорошо. Проводимость в данном случае составляет не менее 4 мк. Допустимый уровень перегрузки равняется 30 А. Система защиты от импульсов есть. Преобразователь у зарядки отсутствует.

    С аккумуляторами на 20 Ач модель используется часто. Всего у модификации есть один держатель. Фиксаторы установлены на выходных контактах. Показатель напряжения максимум равняется 20 В. Компаратор в представленной зарядке отсутствует. Зажимы используются довольно широкие. Регулятор у зарядки установлен с поворотным механиком. По габаритам модель является компактной и весит крайне мало. Селектор в устройстве применяется открытого типа.

    Зарядные устройства Tenex

    Зарядка данной серии подходит для аккумуляторов на 100 Ач. В данном случае расширитель используется переходного типа. Показатель выходной проводимости у модели невысокий. Проблемы с диодным мостом наблюдаются редко. Зарядка кислотных аккумуляторов на 20 Ач примерно происходит за один час. Система защиты от импульсов имеется.

    Динистор у модификации используется с двумя фильтрами. Показатель предельного напряжения находится на отметке 30 В. Регулятор тока у модели есть. При необходимости можно включать циклический режим. Зарядить кислотный аккумулятор на 500 Ач можно в среднем за три часа. Проблемы с кроткими замыканиями наблюдаются не слишком часто.

    История

    Свинцовый аккумулятор разработал в 1859-1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля . В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком .

    Принцип действия

    Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

    Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)

    Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде . При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

    Химическая реакция (слева направо - разряд, справа налево - заряд):

    В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород , на аноде - кислород . При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

    Устройство

    Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит . Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO 2), у отрицательных активным веществом является губчатый свинец .

    На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.

    Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

    Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

    Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном , покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

    В результате каждой реакции образуется нерастворимое вещество - сернокислый свинец PbSO 4 , осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

    Основными процессами износа свинцово-кислотных аккумуляторов являются:

    Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния . Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта - например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи - минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести - то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

    Вторичная переработка

    Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

    Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец .

    См. также

    Примечания

    Ссылки

    • ГОСТ 15596-82
    • ГОСТ Р 53165-2008 Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия. Взамен ГОСТ 959-2002 и ГОСТ 29111-91
    • Видео, демонстрирующее принцип работы аккумулятора на YouTube
    • Обслуживание и Восстановление свинцовых АКБ системы AGM"


    До недавнего времени наиболее распространенным способом накопления электрической энергии являлось применение свинцово-кислотных аккумуляторных батарей. Они, например, широко используются в системах бесперебойного электроснабжения малой мощности, но абсолютно непригодны для перекачки больших потоков энергии в ежедневном режиме. С развитием технологий на рынке появились литий ионные (ЛИА) АКБ.

    Высокая реактивность и способность лития интеркалировать (проникать) в кристаллическую решетку другого материала позволяет сохранить в атомных связях большое количество энергии, поэтому служит идеальным накопителем.

    Благодаря наноструктурированной топологии, литий-ионные АКБ имеют безусловные преимущества перед всеми существующими на сегодняшний день аналогами по ряду технических характеристик:

    • Токи заряда и разряда беспрецедентно высоки. Способность ЛИА воспринимать большой ток заряда позволяет накапливать энергию в режиме онлайн. Разряд может пятикратно превосходить заряд, что говорит о возможности мгновенной отдачи огромного количества энергии.
    • Очень низкий саморазряд, не превышающий 2% от первоначального заряда в месяц
    • Отсутствует эффект памяти (не требует полной разрядки перед циклом заряда).
    • Высокий электрохимический потенциал (энергетическая плотность);
    • Эксплуатация в широком диапазоне температур (от -40°C +50°C).

    Еще несколько лет назад, свинцовые АКБ не имели конкурентов в этой области, так как альтернативные АКБ, были очень дорогостоящими, в связи с чем их применение было экономически не выгодно.

    Но с развитием технологий, на рынке появились литий ионные (ЛИА) АКБ, которые на первый взгляд имеют более высокую цену, тем не менее, если рассмотреть более внимательно, то в системах ИБП от 50кВт, применение именно ЛИА, имеет более высокую экономическую эффективность. Ниже приведены сравнения.

    Основными параметрами любой АКБ, является:

    1. Ёмкость: Какое количество энергии может запасти АКБ на 1 кг веса
    2. Ток разряда: Как быстро накопленную энергию АКБ может отдать
    3. КПД: потери энергии при заряде и разряде
    4. Количество циклов разряда и заряда
    5. Срок годности – или период эксплуатации
    Критерий Свинец ЛИА
    Ёмкость (вт/кг) 25 110
    Ток разряда (при котором АКБ отдаёт всю ёмкость) 0,1С (10% от тока ёмкости) 3С (300% от тока ёмкости)
    КПД 80% 97%
    Количество циклов разряда - заряда 700 5000
    Срок годности – или период эксплуатации 3.5 лет 25 лет

    Как видно из таблицы, ЛИА имеют значительные преимущества перед свинцовыми АКБ. Это вызвано в первую очередь тем, что у них разный принцип действия. В Свинцовых АКБ свинцовые электроды вступают в химическую реакцию с электролитом - серной кислотой, за счет чего происходит накопление электроэнергии. Но со временем кислота образует на поверхности электродов сульфат свинца, что приводит батарею в негодность. Преждевременное старение свинцовой АКБ происходит так же при разряде большими токами и параллельном подключении, которое часто используется для увеличения суммарной емкости.

    В ЛИА как таковой химической реакции не происходит, а происходит миграция ионов лития с электрода на электрод, накапливая или отдавая заряд, за счет чего ЛИА имеет значительно лучшие характеристики. Разряд силой тока, пятикратно превосходящей номинальную емкость АКБ – штатный режим работы. Допускается параллельное соединение, т.к. контроллер заряда/разряда установлен на каждом элементе батареи.

    Для оценки экономической выгоды от применения той или иной технологии, рассмотрим затраты на первичную установку, а так же затраты на дальнейшую эксплуатацию. В качестве примера примем ИБП на 300 кВА со временем бесперебойной работы 30 мин. Это время было выбрано потому, что именно этого времени хватит в случае необходимости запустить, и ввести в рабочий режим резервный генератор, а генераторы как известно заводятся далеко не с первого раза, особенно если стоят в резерве.

    ИБП 300 кВА. Напряжение постоянного тока 400 В. Время работы при полной нагрузке 30 мин.
    Критерий Свинец Литий Комментарии
    При работе на полную нагрузку, ИБП будет потреблять 750А в течении 30 мин. Требуемая ёмкость и тип АКБ OPzV 1200Ач (2В) 185ШТ ЛИА 400Ач (3.2В) 125 ШТ. АКБ требует высокие токи разряда, которые могут поддерживать только единичные элементы по 2,14В. При высоких токах разряда свинцовая АКБ не отдаёт 100% своей ёмкости. Рекомендуемые производителем токи разряда подтверждают, что минимальная ёмкость АКБ должна быть 1200Ач. Для лития данных проблем нет, поэтому устанавливается батарея почти номинальной ёмкости.
    Стоимость Одинаковая Одинаковая Обычно цена АКБ рассчитывается исходя из стоимости одного Ампер часа. Приведенные цены являются средними по рынку. Цена за ЛИА АКБ приведена с учетом стоимости системы управления.
    Вес АКБ В среднем по 100 кг на элемент 185*100=18500 кг В среднем по 11 кг на элемент 125*11=1375 кг При использовании ЛИА АКБ потребуется размер помещения(площадь и предельные нагрузки на пол) в 13 раз меньше чем для свинца.
    Срок эксплуатации до замены 3.5 лет 25 лет Срок эксплуатации свинцово кислотных OPzV АКБ 20 лет, но они не служат так долго. Дело в том, что производитель указывает срок эксплуатации при разряде батареи током не более 10% от номинальной ёмкости, а значит для АКБ 1200Ач, это всего 120А. Ток разряда данного ИБП 750А, что в 6 раз выше рекомендованного. При такой силе разряда свинцовые АКБ выходят из строя гораздо быстрее, а потеря емкости заметна уже через несколько циклов разряда.
    Стоимость обслуживания Высокая Нет Можно установить свинцовых АКБ в 6 раз больше, что бы они прослужили 18 лет, но стоимость такого массива будет астрономической. ЛИА работает в штатном режиме и прослужит заявленное время эксплуатации без замены.

    Разряд Свинцово-кислотной АКБ постоянным током, А.
    Конечное напряжение 1,75В элемент при температуре 20°С

    Маркировка Минуты Часы
    10 15 30 1 2 3 5 8 10
    OPzV-200 261 230 171 122 79 58 39 27 21
    OPzV-250 302 287 213 152 98 73 49 33 26
    OPzV-300 362 344 256 182 118 87 58 40 31
    OPzV-350 365 347 275 204 139 105 72 50 37
    OPzV-420 438 417 330 245 167 126 86 60 45
    OPzV-500 472 448 366 286 195 147 101 67 52
    OPzV-600 477 454 388 302 219 168 118 85 66
    OPzV-800 740 693 580 422 293 223 157 113 82
    OPzV-1000 887 823 681 515 370 282 197 131 103
    OPzV-1200 956 903 790 614 450 342 237 165 123
    OPzV-1500 1011 995 874 697 521 407 294 197 155
    OPzV-2000 1372 1326 1165 929 695 543 391 276 207
    OPzV-2500 1685 1658 1510 1203 863 668 482 317 258
    OPzV-3000 2022 1989 1813 1444 1035 802 579 378 309

    Итог. Первичная стоимость свинца будет больше, а также при первичной разнице в стоимости в 11% применение ЛИА позволит:

    • Сократить в 13 раз площадь (объем) помещения для размещения системы ИБП.
    • Сократить в 13 раз вес батарейного стеллажа.
    • Минимум троекратно продлить срок службы перед заменой АКБ. Экономия при эксплуатации ЛИА, за 20 лет составит не менее 350% , исходя из расчета первичных затрат, стоимости обслуживания, периодической замены и трехкратной утилизации свинцовых АКБ.

    Применение нашей технологии позволяет осуществить прямую замену Свинцово-кислотных или Никель-Кадмиевых АКБ на ЛИА, БЕЗ каких либо конструктивных изменений или дополнений к системе заряда или подключения! Даже перемычки могут остаться старые.

    Свинцовые аккумуляторы были изобретены еще в 1859 году, являясь своеобразным «классическим» решением в мире автономных источников питания. Несмотря на давность технологии, свинцовые аккумуляторы наиболее часто используются в современном обществе.

    Особенности свинцовых аккумуляторов

    В основе свинцовых аккумуляторов лежат химические реакции между диоксидом свинца и чистым свинцом. Электролитом в таком устройстве выступает раствор серной кислоты. Потому такие аккумуляторные батареи часто еще называют свинцово-кислотными.

    Сама внутренняя структура аккумуляторов достаточно проста. Существует два типа электродов: положительные (диоксида свинца) и отрицательные (свинец). Кроме того, в электроды, кроме основных элементов, часто добавляют немного (1-2%) примесей для большей эффективности работы. Сами же электроды опущены в электролит.

    Сфера применения свинцовых аккумуляторов

    Условно, такой тип автономных источников питания можно поделить на 4 группы:

    Стартерные аккумуляторы. Используются для запуска двигателей современных автомобилей и обеспечения электропитанием внутренних систем транспортного средства.

    Стационарные свинцовые аккумуляторы. Широко используются в роли аварийных источников питания. Работа при этом, осуществляется в режиме непрерывного заряда.

    Тяговые аккумуляторы. Большой ресурс, возможность глубокого разряда и небольшая стоимость позволяет их активно применять в электромобилях различного направления.

    Портативные. Активно используются для питания небольшого инструмента, лампочек и обладают широкими рабочими температурами.

    Преимущества и недостатки

    Преимущества свинцовых аккумуляторов:

    Широкий диапазон емкостей;

    Невысокая цена;

    Небольшой показатель саморазряда;

    Стабильность работы и подаваемого напряжения;

    Отработанная технология переработки свинцовых аккумуляторов позволяет снизить нагрузку на окружающую среду.

    Вместе с явными преимуществами, свинцовым аккумулятором присущи такие недостатки:

    Большой вес и габариты батареи;

    Остро негативное влияние на цикл жизни батареи в случае глубокого разряда;

    Большие (до 30%) потери электроэнергии при заряде;

    Не герметичные (обслуживаемые) , необходимо регулярно подливать дистиллированную воду;

    Сложно спрогнозировать момент выхода из строя батареи;

    Нельзя оставлять сильно разряженный аккумулятор на морозе.

    Благодаря своей стабильной работе и невысокой цене, свинцовые аккумуляторы не собираются сдавать свои позиции на рынке без боя. Впрочем, в ближайшее будущее возможен прорыв в создании кардинально более эффективных автономных источников питания.