Система принудительной вентиляции картера. Как работает система вентиляции картера двигателя Шланг системы принудительной вентиляции картера

Это вторая версия статьи, созданная вместе с участниками группы проекта, в ней исправлены грубые ошибки по работе вентиляции картера двигателя для вывода картерных газов. Итак система вентиляции картера необходима для уменьшения вредных веществ, выходящих из картера двигателя в воздух. В картере безусловно находятся пары бензина, воды и пары масла — все это картерные газы. Скопление картерных газов ухудшает свойства и состав моторного масла, разрушает металлические части двигателя, в Honda Civic при сбоях в системе или же агрессивной эксплуатации двигателя, количество паров возрастает и двигателя покрывается нагаром изнутри. Очевидным фактом сбоя ялвяется понижение мощности, увеличение расхода топлива. Визуально это видно как нагар на дроссельной заслонке, нагар на впускном коллекторе.
Нагар в любом его проявлении является негативном факторе влияющем на характеристики двигателя. Уменьшается диаметр дроссельной заслонки, это значит меньше воздуха будет поступать во впускной коллектор. Нагар на впускном коллекторе уменьшит его объем а значит и отдачу. Закупорка каналов соотвественно введет к неправильном составу смеси и воздушному голоданию.

Схемы работы системы вентиляции картера

Система вентиляции картера Honda Civic, практически ни чем не отличается от большинства легковых автомобилей с ДВС. В качестве источника потока воздуха используется впускной тракт. Свежий поток воздуха попадает в ГБЦ, далее в двигатель, поток проходит до низа двигателя в картер, и выводит с собой через камеру сапуна отработанные газы на вторичную переработку во впускной коллектор. Такая система нужна для переработки материала, негативно влияющего на экологию. Именно поэтому эта система закольцована в двигателе а не выходит после камеры сапуна наружу.
Как вы понимаете данная система кроме контура вентиляции и впускного тракта имеет еще два компонента, камера сапуна выполняющего функцию приемника тяжелый частиц и клапан PCV (Positive Crankcase Ventilation) — клапан принудительной вентиляции картера. PCV необходим для направления движения потока. Немного иллюстраций для понимания терминов.







Проблема нагара в системе

Откуда идет нагар? Допустим двигатель новый, и функцию примитивного фильтра выполняет камера сапуна. В котором масло оседает, а газы уходят ка полагается через клапан PCV во впуск снова в двигатель. Все идеально, тяжелые части масла отделяются, а насыщенный бензином поток идет на переработку. Но это в идеальном случае. Во первых со временем камера сапуна загрязняется просто до жутчайшего состояния, вентиляция ухудшается. Так как идеального ничего не бывает, то картерные газы все равно несут в себе масло, даже после сапуна. И клапан PCV начинает загрязняться, и в итоге он забивается маслом, грязью, и тд. В итоге циркуляция газов нарушается, в зависимости от того в каком положение клапан "заклинило" будут те или иные последствия.

  • PCV всегда открыт, дополнительный подсос воздуха мимо дроссельной заслонки через ГБЦ — более бедная смесь, в следствие чего добавление компьютером больше топлива, повышенный расход, не устойчивая работа Холостого Хода
  • PCV всегда закрыт, газы копятся в двигателе, повышение давление в картере, может повысится риск "выдавливания" сальников коленвала от давления масла. Картерные газы выходят через ГБЦ обратно во впускной тракт, нагар оседает на дроссельной заслонке, впускном коллекторе, и форсунках, в конечном счете доходит и до поршней.





Решение проблемы нагара

Решение простое, необходимо чистить клапан PCV и камеру сапуна. Но это подходит для городского движения. Если вы постоянно давите педаль акселератора, то тут неизбежно все равно будет загрязнение впускного коллектора. Решение пришло из автоспорта, где главное это производительность, в мотоциклах маслоуловитель устанавливался чаще чем в автомобилях. Уловитель масла, маслоуловитель, маслопомойка, маслоотделитель, Oil Catch Can\Tank это различные названия одного и того же изделия, способного отделить масло из картерных газов. В идеале их нужно две штуки, один на впуск, другой около PCV.





Устройство маслоуловителя и принцип работы

Банка-ёмкость с двумя штуцерами и фильтр отбора для масла внутри банки, все это в любой цветовой гамме. Это примитивное описание устройства, которое стоит по 40-300 долларов. Кроме стоимости прежде всего нужно описать принцип работы. Устанавливается в разрезе шланга от ГБЦ к впускному тракту. На входной штуцер подается картерные газы со смесью паров масла, далее попав в банку этот поток газов попадает в хитрую структуру препятствия.
В одном случае это просто металлическая стенка, по типу как сделаны зажигалки для сигарет. Это самый плохой способ, хотя и работающий.
Второй случай это фильтр поролон, сетка, или же металлическая губка. Это хороший способ для фильтрации, масло будет оседать на проволоке стекать вниз. Использовав поролон, но будет проблема прохода самих газов во впускной коллектор. Чистка такого маслоуловителя тоже будет проблематична.
Самая нормальная система маслоуловителя, спиральная с металлическим фильтром. Поток ударяется в стенку, газы быстро находят выход во впускной коллектор, а тяжелые масляные капли стекают вниз и остаются внутри, во закрытой части маслоуловителя. Остается только слить накопившейся масло во время, есть варианты когда масло обратно попадает в двигатель, тем самым масло из двигателя не уходит почти совсем.



Топливный фильтр как дешевая замена

Как полумера, топливный фильтр (например ВАЗ), может быть использован. Небольшая стоимость в 1-2 доллара и доступность. Но, такие фильтра рассчитаны на бензин а не на тяжелые масла. Фильтр засорится очень быстро. Итог — закупоривание канала, вентиляции картерных газов, и их циркуляция и накопление внутри двигателя во всех его частях. Особенно это заметно при низких температурах. Далее падение мощности, с очень большим шансом не стабильной работы двигателя, на пример двигатель начинает троить.



Узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

В двигателе любого автомобиля нет практически ни одной лишней системы. Работа всех деталей и узлов полностью взаимосвязана и выход из строя одного элемента, может привести к гибели другого. Этому суждению соответствует и система вентиляции картера двигателя. Рассмотрим, для чего она нужна, ее устройство и принцип работы. В конце, мы дадим вам небольшую справку по неисправностям системы.

Зачем нужна вентиляция картера двигателя?

Масло и топлива в двигателе отделяются двумя взаимодействующими деталями – цилиндр-поршень. Дело в том, что конструкция этих узлов не позволяет полностью герметизировать камеру сгорания и систему смазки двигателя. Часть газов через компрессионные и маслосъемные кольца все-таки прорываются в картер двигателя и нарушают состав масла. Такие газы называются картерными.

Проблема заключается в следующем. Дело в том, что газы в картере с маслом увеличивают давление внутри системы смазки. Повышенному давлению подвергается и масло, которое начинает давить на самые слабые участки двигателя – сальники и уплотнители. В конечном итоге происходит утечка масла, которая сопровождается масляным голоданием.

Кроме того, повышенное давление масла увеличивает скорость его старения, а значит, увеличивает износ смазывающего компонента, который придется менять раньше положенного срока.

Для борьбы с повышением давления в системе смазки предусмотрена специальная система, которая называется системой вентиляции . Многие задают вопросы, для чего необходимо создание целой системы вентиляции, когда можно попросту провести шланг из картера в подкапотное пространство, как делалось это на «Жигулях». Дело в том, что картерные газы являются недогоревшим остатком топлива, а потому содержат множество вредных веществ, которые оказывают неблагоприятное воздействие на окружающую среду.

Видео - Вентиляция картерных газов

Устройство и принцип работы системы вентиляции картера

Данная система состоит из множества узлов, основными из которых являются: специальный клапан с редукционным приводом, система различных шлангов и трубок, клапан для создания принудительной вентиляции и устройство, предназначенное для маслоотделения.

Самым основным элементом можно назвать устройство для маслоотделения. Оно располагается в самой верхней части картера и представляет собой полый короб, в котором одна стенка выполнена в виде решетки, которая согнута на 30 градусов. В нижней части картера устанавливается маслоотражатель. Последний нужен для того, чтобы отсеивать масло от газов, которое тоже будет стремиться попасть в систему вентиляции. Вверху маслоотделителя устанавливается штуцер, идущий в трубопровод системы вентиляции.

Далее идет самый основной компонент системы – это клапан принудительной вентиляции. Сам клапан имеет в своем составе два цилиндра и пружину с поршнем внутри. Так как принудительная вентиляция может происходить только при создании определенного разрежения внутри системы, то и положение поршня должно быть разным. Поэтому в клапане предусмотрено три положения, которые определяют основные режимы работы клапана.

  • Положение А. Источник, создающий разряжение имеет очень низкое давление. Соответственно, такое давление недопустимо для работы клапана и он под действием появившейся силы, преодолевая действие пружины, закрывается.
  • Положение Б . В этом случае разряжение довольно высокое, соответственно и давление газов тоже становится большим. Такой режим работы становится не нормальным, а соответственно и клапан под действием пружины также запирается. Такое бывает при повышении оборотов двигателя или применении турбокомпрессоров для ускоренной закачки больших объемов воздуха в цилиндры.
  • Положение А и Б . Для создания такого режима, источник разряжение должен создать оптимальное давление для жесткости пружины клапана. В этом случае, она смещает поршень в промежуточное положение и, таким образом, открывает клапан.

Основой для работы клапана вентиляции картера является обыкновенная разность между давлением за дроссельной заслонкой и после нее. Соответственно, перепад давлений может замеряться и возле турбокомпрессора. Однако, если с обычным мотором все понятно, то с турбированным возникают определенные трудности. Дело в том, что разность давлений в этом слишком высока, что потребует дополнительной регулировки. Для этой цели конструкторы разработали специальный .

Редукционный клапан в своем составе имеет: диафрагму из специальной маслостойкой резины, колодец из металла, в котором имеются два отверстия, и пружину. Если давление, которое создается у источника разряжения, находится на нормальном уровне, то пружина распрямляется и поднимает диафрагму, открывая, при этом, клапан основного отверстия, давая проход для картерных газов.

В том случае, если же давление будет слишком низким, то диафрагма будет смещаться вниз и заставит пружину сжаться. Клапан основного клапана закроется, но при этом, откроется клапан второго отверстия с меньшим сечением. Картерные газы будут проходить именно через него.

Для обеспечения наиболее плавного хода диафрагмы применяется третий клапан, который установлен сверху корпуса клапана. Таким образом, достигается регулировка давления, воспринимаемого пружинами системы вентиляции.

Редукционный клапан помогает производить вентиляцию не только картера, но и блока цилиндров в целом. Это связано с его возможностью использоваться при повышенных нагрузках двигателя, когда давление увеличивается прямопропорционально.

Неисправности системы вентиляции

Несмотря на простоту системы, она может подвергнуться и банальным неисправностям, которые рано или поздно дадут о себе знать.

Прежде всего – это изменение положение поршня, относительно его посадочного места. Может проявиться в виде и периодическими пропусками зажигания.

Другая проблема – это замерзание редукционного клапана в холодную погоду. Данная проблема касается не всех двигателей, но тоже имеет место быть. Может проявиться в виде повышенного расхода смазочного компонента. При увеличении нагрузки на мотор эта величина увеличивается.

Вот и все, что нужно знать о системе вентиляции картера двигателя.

В настоящее время, несмотря на стремительное развитие технологий, создать совершенно герметичную пару трения деталей — цилиндра и поршневого кольца - не представляется возможным. Поэтому в ДВС со временем при функционировании скапливаются продукты сгорания.

В поддон картерные газы проходят через которые прилегают к цилиндрам неплотно. В результате тепло отводится хуже, сокращается срок эксплуатации смазочной жидкости и образуется чрезмерное давление на все блочные уплотнения. Система вентиляции картера предотвращает чрезмерное картерное давление.

Развитие устройства

В начале механизм выглядел следующим образом: из картера просто выводилась трубка, выпускающая газы в атмосферный воздух и загрязняющая его. Но нормы по выбросу газов от транспортных средств серьезно ужесточались. Поэтому система вентиляции картера была вынужденно разработана производителями.

Принцип действия механизма

В том виде, в котором система известна в настоящее время, газы не просто выбрасываются в атмосферу. Они направляются в мотор посредством выведенной трубки из картера, другой конец которой подсоединен ко Оттуда газы направляются в камеру сгорания. В момент вспышки часть из них сгорает, а другая часть выбрасывается через выпускной механизм. Лишь малая доля от этих газов снова попадает в картер. Так процесс происходит без перерыва.

Типы системы рециркуляции картера

Известны два типа системы:

  • открытая;
  • закрытая.

В первом случае, как описано в начале статьи, газы отводятся просто в атмосферу. Во втором они отсасываются во впускной трубопровод. Закрытая система вентиляции картера: ВАЗом и "Ладой", БМВ и "Мерседесом", японцами и американцами применяется в основном в настоящее время.

Помимо этого, закрытые системы бывают с переменным или постоянным потоком. Первый вид более точно способен регулировать рециркуляцию картера. Он меняется в зависимости от количества поступаемых газов.

Устройство

Наверху находится маслоотделитель системы вентиляции картера, а внутри него — масляной отражатель. В его задачу входит освобождение газов от частиц масла. Маслоотделитель системы вентиляции картера имеет выход с трубопроводом. При нормальном функционировании мотора в картере постоянно должно происходить определенное разрежение. Клапан может срабатывать в трех вариантах.

Принудительная система вентиляции картера: клапан

Рассмотрим вкратце все три эти варианта.

1. За дросселем образовывается низкое давление от 500 до 700 мБар. Система вентиляции картера такой режим не выдерживает. И поршень, под действием разрежения, закрывает клапан.
2. Если дроссель открыт полностью, то давление там одинаковое с атмосферным или даже выше. При достижении 500-700 мБар поршень закрывает клапан для прохождения газов.
3. В среднем положении обеспечивается нормальное давление поршня.

Если работа клапана вызывает вопросы, то его исправность легко проверить. Для этого на холостых оборотах на горловину, куда заливается масло, кладется лист бумаги. Если он будет опускаться и подниматься вместе с мембранным движением, то клапан является исправным.

Нормальное функционирование можно проверить и другим способом. В режиме холостого оборота следует снять шланг вентиляции и закрыть его пальцем: должно чувствоваться всасывание.

Редукционный клапан

Если мотор функционирует на больших оборотах, во впускном коллекторе появляется давление, которое имеет равное значение с атмосферным или превышает его. В этом случае в картер попадает больше газов. Если во впуске имеется турбокомпрессор, то разрежение будет чересчур большим и его следует уравновесить.

Для этого предусматривается который срабатывает во впускном коллекторе, когда открывается заслонка. Механизм, состоящий из мембраны и пружины, вставляется в пластиковый корпус, в котором имеются входной и выходной штуцеры.

Работа редукционного клапана

При нормальном разрежении пружина не нагружается. При этом мембрана приподнята и газы пропускаются свободно.

При пониженном давлении диафрагма опускается и закрывает выход, преодолевая действие пружины. Тогда газы начинают движение через обходной путь — канал с калиброванным отверстием.

К сожалению, действуя положительно с одной стороны, система вентиляции картера двигателя создает проблему с другой. Выйдя из поддона, газы захватывают и частички смазки, загрязняя таким образом впускную систему. Кроме того, они оседают на поверхностях каналов выхода и деталях рециркулирующего клапана. Это ведет к сужению каналов и может стать причиной неисправностей в работе впрыска. Если же диафрагма будет заклинивать, то увеличится. Тогда придется менять клапан.

Также нужно не забывать о другой немаловажной детали и вовремя менять шланг системы вентиляции картера — обычно это делается вместе с рециркулирующими клапанами. В противном случае, на нем образуются трещины и разрывы.

Чтобы предотвратить дорогостоящий ремонт, необходимо обращать внимание на появляющиеся пятна на уплотнениях двигателя, увеличении расхода горюче-смазочной жидкости и нестабильном функционировании мотора. Если вовремя подъехать в сервисный центр, проблему удастся решить в зародыше, пока она не успела нанести существенный вред агрегату.



Вентиляция картера предназначена для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через зазоры между гильзой и поршневыми кольцами и их взаимодействия с парами масла.

В газах содержатся загрязняющие масло серистые соединения и пары воды, которые образуют серную и сернистую кислоты, значительно ухудшающие качество масла. Пары воды вызывают вспенивание масла и образование эмульсии, что затрудняет поступление масла к трущимся поверхностям. Прорвавшиеся в картер газы повышают в нем давление, что может вызвать утечку масла через уплотнения картерного пространства.

Недопустимо также проникновение газов под капот двигателя, а затем в кузов и кабину автомобиля, так как содержащиеся в газах вредные вещества опасны для пассажиров и водителя. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.

В автомобильных двигателях применяется вентиляция картера двух типов:

  • открытая – с отводом картерных газов в окружающую среду;
  • закрытая – с отсасыванием газов во впускную систему двигателя.

Открытая вентиляция (рис. 1 ) осуществляется под действием разрежения, возникающего в газоотводящей трубке вследствие относительного перемещения воздуха при движении автомобиля. Чтобы вместе с картерными газами не уносились частицы масла применяется специальный сапун лабиринтного типа, на стенках которого масляные капли оседают и стекают в поддон.

Недостатком открытой системы вентиляции картера является ее низкая эффективность, а также отравление окружающей среды вредными для здоровья человека и живой природы веществами.

В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод. Отвод газа через воздухоочиститель не создает требуемой интенсивности отсоса при минимальных частотах вращения коленчатого вала и полной нагрузке.
Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей. Поэтому более предпочтительной является система с отсосом газов непосредственно во впускной трубопровод двигателя, в котором всегда имеется разрежение.




Система вентиляции, показанная на рис. 2 , работает следующим образом: под действием разрежения во впускном трубопроводе 10 картерные газы поднимаются вверх и через угольник 9 и шланг 5 попадают в корпус маслоотделителя, закрытый крышкой 1 .
Между крышкой и корпусом находится резиновая мембрана 2 , поджимаемая пружиной 3 к корпусу. Оседающие на дне корпуса маслоотделителя частицы масла по трубке 6 сливаются в картер двигателя.


С помощью мембраны 2 , которая находится с одной стороны, под давлением атмосферного воздуха, а с другой – под давлением картерных газов и пружины, в картере поддерживается избыточное давление.

На рис. 3 показана схема вентиляции картера карбюраторного двигателя автомобилей марки «ВАЗ ».
Здесь картерные газы отсасываются через маслоотделитель 7 и шланг 6 в вытяжной коллектор 4 воздушного фильтра 3 . Из вытяжного коллектора на холостом ходу и при малых нагрузках двигателя (когда разрежение в воздушном фильтре невелико) картерные газы поступают через шланг 2 и золотник 1 под дроссельные заслонки карбюратора.

При остальных режимах работы двигателя картерные газы поступают в карбюратор через воздушный фильтр 3 . В маслоотделителе 7 масло выделяется и по отводной трубке 8 стекает в масляный поддон.
Пламегаситель 5 предотвращает проникновение пламени в картер двигателя при возможных вспышках в карбюраторе.



Система принудительной вентиляции картера

Во всех двигателях газы, прорывающиеся в картер, удаляются системой принудительной вентиляции картера (PCV - positive crankcase ventilation). Эта система выкачивает испарения из картера во впускной коллектор, - впервые она появилась в 1961 году в большинстве автомобилей в штате Калифорния, а с 1963 года стала использоваться во всех автомобилях, эксплуатируемых в США. Испарения подаются в цилиндры вместе с всасываемой топливно-воздушной смесью и сжигаются в камерах сгорания. В определенных режимах работы двигателя эти газы выталкиваются обратно в картер через впускной фильтр (рис. 6.24).

ПРИМЕЧАНИЕ

Засорение и нарушение пропускной способности системы принудительной вентиляции картера - это основная причина высокого потребления масла двигателем и одна из причин возникновения различного рода утечек масла. Прежде чем приступать к дорогостоящему ремонту двигателя проверьте состояние системы принудительной вентиляции картера.

Рис. 6.24. Система принудительной вентиляции создает в картере постоянное разрежение за счет пониженного давления во впускном коллекторе. Чистый воздух, пройдя через воздушный фильтр, поступает в картер и, смешавшись с газами, прорывающимися через поршневые кольца, выбрасывается во впускной коллектор. Клапан принудительной вентиляции (PCV-клапан) регулирует поток газовой смеси, поступающей в двигатель, и отсекает его в случае возникновения обратной вспышки в двигателе, предотвращая распространение пламени во внутреннюю область картера.

ПРОВЕРКА ПРАВИЛЬНОСТИ РАБОТЫ СИСТЕМЫ ПРИНУДИТЕЛЬНОЙ ВЕНТИЛЯЦИИ КАРТЕРА

Правильно работающая система принудительной вентиляции картера должна обеспечивать отвод газов из картера во впускной коллектор. Если пропускная способность трубопроводов, шлангов и самого клапана принудительной вентиляции не нарушена, то во внутреннем пространстве картера создается разрежение. В картере создается незначительное разрежение (обычно оно составляет меньше 1 дюйма ртутного столба при измерении через отверстие щупа для измерения уровня масла). Оно создается также и в других полостях двигателя. Через дренажные отверстия масло стекает в масляный поддон. Через эти же отверстия происходит распространение зоны пониженного давления в пространстве под крышками головок блока цилиндров и в развале блока цилиндров - в большинстве V-образных двигателей. Проверка функционирования системы принудительной вентиляции картера осуществляется разными способами.

Проверка с помощью встряхивания

Способ проверки встряхиванием заключается в том, что клапан принудительной вентиляции картера снимают и встряхивают в руке (рис. 6.25).

Если клапан принудительной вентиляции картера не дребезжит , то он определенно неисправен и подлежит замене.

Если клапан принудительной вентиляции картера дребезжит , то это еще не гарантирует того, что он исправен. Во всех PCV-клапанах стоят пружины, которые со временем, и следствие циклического нагрева-охлаждения, становятся слабее. PCV-клапан следует периодически заменять точно таким же через установленные производителем автомобиля периоды (обычно каждые три года или после 60 000 км пробега).

Рис. 6.25. Пример типичной конструкции клапана принудительной вентиляции картера (PCV-клапана). Причиной неровной работы и внезапных остановок двигателя может быть неисправность или засорение PCV-клапана или шланга. Поскольку расход воздуха, прогоняемого через PCV-клапан, составляет около 20% объема воздуха, необходимого для работы двигателя на холостом ходу, установка клапана другого типа, чем рекомендованный производителем, может заметно повлиять на работу двигателя в режиме холостого хода