Основные типы рулевых приборов. Рулевое устройство, составные части и их назначение

Рулевое устройство является основным средством, обеспечивающим надежное управление судном при любых условиях плавания. Его конструкция должна удовлетворять требованиям Речного Регистра, предъявляемым к судну данного типа. Оно состоит из руля, рулевого привода, рулевой машинки, аксиометра, а иногда и рулевого указателя. В настоящее время на судах находят применение поворотные насадки, активные рули и подруливающие устройства.

Рули в зависимости от формы и расположения пера по отношению к оси вращения подразделяются на простые, балансирные и полубалансирные (рис. 33).

Простым называется руль, у которого перо расположено по одну сторону оси вращения (баллера). По форме профиля в плане простые рули могут быть плоскими (пластинчатыми) и обтекаемыми. Балансирным называется руль, у которого перо расположено по обе стороны баллера. Передняя по отношению к баллеру часть пера называется балансирной частью. В зависимости от конструкции кормовой части судна балансирные рули могут иметь нижнюю опору крепления или быть подвесными. Подвесной балансирный руль крепится на палубе или в корпусе судна (ахтерпике) на специальном фундаменте.

Полубалансирный отличается от балансирного руля тем, что его балансирная часть меньше по высоте, чем все перо руля, и расположена только в нижней части.

Для обеспечения управляемости на заднем ходу толкачи оборудуются рулями заднего хода (так называемыми фланкирующими), которые устанавливаются впереди гребных винтов с таким расчетом, чтобы поток воды, возникающий при работе винтов на задний ход, был направлен на эти рули.

Поворотная насадка (рис. 34) представляет собой металлический цилиндр, внутри которого находится гребной винт судна. Своей верхней частью цилиндр крепится к баллеру, при помощи которого его можно поворачивать относительно гребного винта.

У выходного отверстия насадки, для большей эффективности ее действия на управляемость судна, укреплен пластинчатый руль, который часто называют стабилизатором. С этой же целью в дополнение к стабилизатору иногда насадки оборудуются радиальными ребрами жесткости и шайбами.

Подруливающее устройство представляет собой трубу, установленную поперек корпуса судна, через которую с борта на борт прокачивается забортная вода с помощью центробежного насоса или винта. В первом случае подруливающее устройство называют насосным, а во втором-туннельным. Выходные отверстия в бортах имеют профилированную наделку и решетки для защиты трубы (туннеля) от попадания посторонних предметов. Принцип действия устройства заключается в том, что при перекачке (прогонке) воды с одного борта на другой вследствие реакции выбрасываемой струи создается упор, перпендикулярный диаметральной плоскости судна, что способствует перемещению судна вправо или влево. При изменении направления выброса струи будет изменяться и направление перемещения судна.

Рулевые приводы служат для передачи усилий от рулевой машины на баллер руля. Наибольшее распространение получили приводы секторного типа с гибкой или жесткой передачей.

Рис. 37. Схема электрогидравлического рулевого устройства

При гибкой передаче, которая получила название штуртросовой, усилие с рулевой машины на сектор передается при помощи цепи, стального гибкого троса или стального прутка. Цепь обычно ставят на участке, проходящем через звездочку рулевой машины, а на прямых участках — стальной трос или пруток. Для соединения отдельных участков штуртроса применяются замки, зажимы и талрепы. Чтобы изменить направление штуртроса, на криволинейных участках ставят направляющие блоки-роульсы, а для предохранения штуртроса от истирания о палубу — палубные катки.

В последнее время на судах находят все большее применение жесткие передачи — валиковые и шестеренчатые.

Валиковая передача (рис. 35) представляет собой систему жестких звеньев валиков, соединенных между собой универсальными шарнирами или коническими зубчатыми шестеренчатыми передачами.

Шестеренчатая передача представляет собой систему шестерен и валиков, при этом усилие рулевой машины передается на сектор руля с помощью червяка через шестерню.

На судах, имеющих два и более рулей, рулевой привод имеет более сложную конструкцию.

Рулевые машины по своей конструкции делятся на ручные, паровые, электрические и гидравлические.

Ручные рулевые машины просты по конструкции, поэтому их устанавливают на небольших судах (катерах) и на несамоходном флоте. Основными элементами ручных рулевых машин являются штурвальное колесо и связанный с ним барабан, на который наматывается цепь или трос (при штуртросной передаче). Если на судне применяется не штуртросная, а валиковая передача усилий от рулевой машины к рулю, то штурвальное колесо соединяется с шестеренчатым или червячным приводом, который механически связан с этой валиковой передачей.

Паровые рулевые машины ставятся на пароходах в качестве основных.

На большинстве современных теплоходов нашли применение электрические рулевые машины. Они устанавливаются в рулевой рубке или в румпельном отделении, находящемся в кормовом отсеке судна. Электродвигатель приводится в действие с пульта управления из рулевой рубки. Пульт управления имеет манипулятор. Поворотом рукоятки манипулятора вправо или влево включаются соответствующие контакты, и вал электродвигателя начинает вращаться в правую или в левую сторону, изменяя положение рулей судна. Если рули повернутся на тот или иной борт до своего крайнего положения, контакты размыкаются и электродвигатель автоматически выключается.

Рис. 38. Схема гидравлического рулевого устройства теплохода "Метеор":
1-цилиндр-исполнитель; 2-гидроусилитель; 3-штурвал; 4-цилиндр-датчик; 5-рулевая машина; 6-расходный бачок; 7-баллон с воздухом; 8-ручной аварийный насос; 9-гидронасос; 10-гидроаккумулятор

На заметку : Киевская Штурман проводит обучение вождению и повышение водительских навыков.

При установке электрических рулевых машин в обязательном порядке предусматривается резервный (запасной) ручной привод рулевого устройства. Чтобы не выполнять каких-либо переключений, при переходе на ручное управление применяют дифференциал Федорицкого.

Этот дифференциал (рис. 36) устроен и работает следующим образом. Червячные шестерни (колеса) 2 и 5 свободно вращаются на вертикальном валу 6. Внутренние торцовые поверхности этих червячных шестерен жестко связаны с коническими шестернями. На вертикальном валу при помощи шпоночного соединения закреплена крестовина 4, на конце которой свободно вращаются конические шестерни-сателлиты 3, связанные с коническими шестернями червячных колес 2 и 5. На верхний конец вала 6 посажена на шпонке цилиндрическая шестерня 7, входящая в зацепление с зубчатым сектором рулевого привода.

Червячный винт 9 вращается электродвигателем рулевого устройства. Червячный винт 8 связан с ручным запасным приводом и при работе электродвигателя неподвижен. Вследствие этого оказывается застопоренной червячная шестерня 5 с прикрепленной к ней снизу конической шестерней. Червячная шестерня 2 вращается винтом 9, а ее коническая верхняя шестерня заставляет вращаться шестерни-сателлиты 3. Но поскольку шестерня 5 застопорена, то шестерни 3 обегают по ее конической части, поворачивая крестовину 4, связанный с ней вал 6 и шестерню 7. Зубчатый сектор, соединенный шестерней 7, поворачивается.

При ручном управлении застопоренной оказывается червячная шестерня 2. Тогда при вращении червячного винта 9 шестерни-сателлиты обегают коническую шестерню червячного колеса 2, за счет чего происходит поворот вала 6.

Дифференциал Федорицкого является одновременно и регулятором, снижающим число оборотов вала 6 по сравнению с оборотами вала электродвигателя (т. е. червячного винта 9). Регулятор заключен в корпус 1.

Гидравлические рулевые машины, несмотря на целый ряд положительных качеств, получили на речном флоте меньшее распространение. Они устанавливаются главным образом на крупных и скоростных судах с подводными крыльями. Принцип их работы заключается в следующем (рис. 37): электродвигатель 1 приводит в действие насос 2, перекачивающий масло в правый 5 или левый 3 гидравлический цилиндр, в результате чего в цилиндрах перемещается поршень 6 и соединенный с ним румпель 4 рулевого привода, осуществляющий поворот рулей судна.

Гидравлический рулевой привод теплохода на подводных крыльях «Метеор» представлен на рис. 38. Он состоит из силовой системы и системы управления гидроусилителем.

В силовую (открытую) систему входят гидронасос с электроприводом, гидроусилитель, гидроаккумуляторы, расходный бак, фильтры, баллон с воздухом емкостью 8 л с давлением 150 кгс/см2, ручной аварийный насос, арматура и трубопроводы.

Система управления гидроусилителем (закрытая) состоит из цилиндров-датчиков, приводимых в действие от штурвала рулевой машины, цилиндров-исполнителей, заполнительного бачка, арматуры и трубопроводов.

В качестве рабочей жидкости в системе применяется авиационная смесь АМГ-10 (авиационное масло для гидравлики).

В рулевом приводе предусмотрено комбинирование ручного и гидравлического управления, что дает возможность в случае отказа гидравлического управления немедленно перейти на ручное.

Все крупные суда независимо от того, имеют ли они паровые, электрические или гидравлические машины, должны иметь запасное ручное управление. Время перехода с основного управления рулем на запасное не должно превышать 1 мин.

Усилие на рукоятке штурвала ручных рулевых приводов не должно превышать 12 кгс.

Продолжительность перекладки руля с борта на борт на самоходных судах с механическими или электрическими машинами не должна превышать 30 с, а с ручными — 1 мин. Аксиометр — механический или электрический прибор, служащий для указания угла отклонения пера руля. На новых судах аксиометр устанавливается на пульте управления.

Рулевые указатели конструктивно связаны только с головкой баллера руля, они показывают истинное положение руля независимо от работы рулевых приводов. Показание электрического рулевого указателя может быть выведено непосредственно в рулевую рубку судна.

Назначение технических средств управления

На судах ВВП и их типы.

Основные требования к технических средствам управления для судов внутреннего и смешанного (река-море) плавания определяются правилами Российского речного Регистра (РРР), Федерального органа классификации судов внутреннего и смешанного (река-море) плавания. В этих требованиях учитывается тип и класс судов.

Технических средства управления предназначены для обеспечения движения, управления и удержания судна на заданной линии пути. К ним относятся:

Система управления двигательно–движетельной установкой;

Рулевое устройство;

Якорное и швартовое устройства.

Одним из основных элементов технических средств управления является рулевое устройство.

Рулевое устройство служит для изменения направления движения судна и удержания судна на линии заданного пути.

Оно состоит:

Из органа управления (штурвал, джойстик);

Системой передачи;

Исполнительных элементов.

Управляемость судов обеспечивается с помощью исполнительных элементов рулевых устройств. В качестве исполнительных элементов рулевых устройств на судах ВВП могут применяться:

Рули различных типов;

Поворотные винтовые насадки;

Водометные движетельно-рулевые устройства.

Кроме того на некоторых типах судов могут применяться:

Подрулевающие устройства;

Крыльчатые движетельно-рулевые устройства;

Активные и фланкирующие рули.

Рули судов, их формы и типы.

Наибольшее распространение в качестве исполнительного элемента получили рули различных типов.

В состав руля может входить: перо руля, опоры, подвесы, баллер, румпель и др. вспомогательные устройства (сорлинь, гельмпорт, рудерпис).

Р у л и в зависимости от его формы и расположения оси вращения подразделяют на простые, полубалансирные и балансирные; по количеству опор – на подвесные, одноопорные и многоопорные. У простого руля все перо расположено сзади от оси баллера, у полубалансирного и балансирного рулей часть пера расположена впереди от оси баллера, образуя полубалансирную и балансирую части (рис.4.1).

По форме профиля рули подразделяются на пластичные и обтекаемые (профилированные). Наибольшее распространение на судах внутреннего плавания нашли балансирные обтекаемые прямоугольные рули.

Руль характеризуется: высотой h p – расстоянием, измеренным по оси баллера, между нижней кромкой руля и точкой пересечения оси баллера с верхней частью контура руля; длиной l p руля; смещением Δ l p части площади руля вперед относительно оси баллера (у полубалансирных рулей обычно Δ l p до 1/3 l p , у балансирных Δ l p до 1/2 l p ).

Рис.4.1 Рули

Важнейшей характеристикой пера руля является его суммарная площадь ∑S p . Фактическая площадь руля характеризуется выражением

S p ф = h p · l p (4.1)

Суммарная требуемая площадь руля, обеспечивающая управляемость судна выражается уравнением

S p т = LT (4.2)

где - коэффициент пропорциональности;

L – длина судна;

Т – наибольшая осадку судна.

Для обеспечения управляемости судна требуемая суммарная площадь руля должна быть равна фактической площади руля, т.е.

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей — технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов к жиле и ее экрану. , полученное в результате измерений, должно быть не менее нормированного значения, установленного для данной марки кабеля.

Измерив сопротивление изоляции, переходят к установлению или нумерации жил, или направлений повива, которые указывают стрелками на временно закрепленных бирках (рис. 1).

Закончив подготовительные работы, можно приступать к разделке кабелей. Геометрию разделки соединений концов кабелей видоизменяют в целях обеспечения удобства восстановления изоляции жил и оболочки, а для многожильных кабелей также для получения приемлемых размеров места соединения кабелей.

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Назначение : обеспечение управляемости судна, т.е. его способности двигаться по определённой траектории.

Конструкция рулевого устройства .

Общее расположение одного из вариантов рулевого устройства представлено на рисунке.

Рис. 3.1.1. Схема рулевого устройства:

1- перо руля; 2 – фланцевое соединение; 3- опоры баллера;

4 – голова баллера; 5 – рулевой привод; 6 – рулевая машина;

7- штурвал; 8 – рулевая передача; 9 – баллер; 10 – гельмпортовая труба;

11 – петля пера руля; 12 – штырь; 13 – петля рудерпоста;

14 – рудерпост; 15 – пятка ахтерштевня.

Основным элементом, создающим необходимое для маневра усилие, является перо руля 1. Для поворота пера руля на некоторый угол относительно ДП служит баллер 9 – вал переменного по длине диаметра. Участки с увеличенным по сравнению с расчётным диаметром предусматриваются в местах расположения опор баллера 3 для повышения ремонтопригодности. Для соединения баллера и пера руля чаще всего используют либо фланцевое соединение 2, изображённое на рисунке, либо конусное соединение. Баллер руля входит в кормовой подзор корпуса судна через гельмпортовую трубу 10, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор 3 по высоте. Нижняя опора располагается над гельмпортовой трубой и имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна. Верхняя опора располагается непосредственно у головы баллера, обычно она воспринимает массу баллера и руля, поэтому на баллере делают кольцевой выступ.

Необходимое для поворота руля усилие на баллере создаётся посредством рулевого привода . В состав рулевого привода входят: рулевая машина 6; средства передачи крутящего момента от рулевой машины голове баллера 4 (рулевой привод - румпель или сектор 5); рулевая передача 8; а так же система дистанционного управления рулевым приводом – устройство для передачи команд по перекладке руля с ходового мостика (от штурвала 7) на органы управления рулевой машины.

Классификация рулей .

По распределению площади пера руля относительно оси вращения выделяют следующие типы рулей (рисунок 3.1.2):

Рис. 3.1.2. Классификация рулей по распределению площади:

1 – перо руля; 2 – противоледовый выступ; 3 – баллер;

4 – рудерпост; 5- кронштейн.

- небалансирный (обычный ) (рис. 3.1.2, а), ось вращения которого близка к передней (носовой) кромке пера руля (отстоит от неё на расстояние, равное радиусу опоры руля);

- балансирный (рис. 3.1.2, б), ось вращения которого смещена ближе к центру гидродинамического давления (отстоит от передней кромки на расстояние, большее радиуса опоры руля), при этом часть площади пера, находящаяся в нос от оси вращения, называется балансирной;


- полубалансирный (рис. 3.1.2, в), у которого распределение площади в нижней части пера руля соответствует балансирному, а в верхней – обычному рулю;

- подвесной (рис. 3.1.2, г), выделяется в классификации традиционно и является тем же балансирным рулём, отличающимся тем, что непосредственно на пере руля опоры не размещаются.

Балансирные и полубалансирные рули характеризуются коэффициентом балансирности k d:

где: F d - часть площади пера руля, находящаяся между передней кромкой и осью вращения (балансирная), м 2 ; F – полная площадь пера руля, м 2 .

Для балансирных рулей обычно k d = 0,21¸0,23, для полубалансирных k d = 0,15.

Достоинство балансирных и полубалансирных рулей: вследствие меньшего отстояния центра давления от оси вращения момент на баллере требуется меньше, чем у небалансирных.

Недостаток – крепление таких рулей к судну сложнее и менее надёжно.

По форме профиля выделяют следующие типы рулей:

- плоские однослойные, из-за своей низкой эффективности применяются редко – в основном на несамоходных судах;

- профилированные двухслойные (обтекаемые ), состоящие из наружной обшивки и внутреннего набора. Набор формируется из горизонтальных рёбёр и вертикальных диафрагм, сваренных друг с другом. Гоизонтальные рёбра крепятся к основе пера руля – рудерпису, представляющему собой массивный вертикальный стержень. Рудерпис изготавливается вместе с петлями для навешивания пера руля на рудерпост. Конкретную форму профиля руля как правило подбирают экспериментально, соответственно, именуют профили по названию лабораторий, в которых они разработаны.


Рулевые приводы, их виды, конструкция и требования к ним .

Рулевой привод предназначен для непосредственного выполнения перекладки руля и контроля его положения.

В составе рулевого привода можно выделить (достаточно условно) следующие элементы:

Устройство для передачи крутящего момента от рулевой машины к баллеру (иногда называемое собственно рулевым приводом);

Рулевая машина – силовая установка, создающая необходимое усилие для поворота баллера;

Рулевая передача, осуществляющая связь между постом управления и рулевой машиной;

Система контроля.

Выделяют следующие основные виды рулевых приводов:

Механические (ручные), к которым относятся румпельно-штуртросовые, секторно-штуртросовые, секторные с валиковой проводкой, винтовые румпельные;

Имеющие источник энергии (гидравлические, электрические, электрогидравлические).

Механические приводы применяются только на малых судах и в качестве вспомогательных рулевых приводов.

Требования к рулевым приводам содержатся в Правилах классификации и постройки морских судов РМРС (том 1, раздел III «Устройства, оборудование и снабжение», п. 2 «Рулевое устройство» и том 2, раздел IX «Механизмы», п.6.2 «Рулевые приводы»). Среди основных требований можно выделить следующие:

1. Все суда должны быть снабжены главным и вспомогательным рулевыми приводами, действующими независимо один от другого.

2. Главный привод и баллер должны обеспечивать перекладку руля с 35 0 одного борта на 30 0 другого борта не более чем за 28 с при максимальной эксплуатационной осадке и скорости переднего хода.

3. Вспомогательный привод должен обеспечивать перекладку руля с 15 0 одного борта на 15 0 другого борта не более чем за 60 с при максимальной эксплуатационной осадке и скорости хода, равной половине максимальной эксплуатационной скорости переднего хода или 7 уз (в зависимости от того что больше).

4. На нефтеналивных судах, газовозах и химовозах валовой вместимостью 10000 и более, на прочих судах вместимостью 70000 и более, а также на всех атомных судах главный рулевой привод должен включать в себя два (или более) одинаковых силовых агрегата. Соответственно, для них должны быть предусмотрены две независимых системы управления с ходового мостика.

5. Управление главным приводом должно быть предусмотрено с ходового мостика и из румпельного отделения.

6. Управление вспомогательным приводом должно быть предусмотрено из румпельного отделения, а в том случае если он действует от источника энергии – должно быть предусмотрено также независимое управление с ходового мостика.

7. Конструкция рулевых приводов должна обеспечивать переход при аварии с главного привода на вспомогательный за время не более 2 мин.

8. Должен быть обеспечен контроль положения руля.

Выделяют следующие типы рулевых приводов:

Продольно-румпельный, в котором одноплечий румпель, насаженный на головку баллера, расположен в продольном направлении (рис. 3.1.3, а);

Поперечно-румпельный, в котором румпель представляет собой двуплечий рычаг (рис. 3.1.3, б) – название при этом условно, т.к. румпель может находиться как вдоль, так и поперёк ДП судна;

Секторный, в котором насаженный на головку баллера сектор поворачивается ведущей шестернёй рулевой машины (рис. 3.1.3, в).

а) б) в)

Рис. 3.1.3 Типы рулевых приводов:

а – продольно-румпельный; б – поперечно-румпельный; в секторный.

В настоящее время на крупных судах получил распространение поперечно-румпельный привод с совмещённой с ним четырёхплунжерной гидравлической рулевой машиной.

Выделяют следующие типы рулевых передач:

Валиковая, при которой связь между постом управления и исполнительным механизмом (например, золотником гидравлической рулевой машины) осуществляется посредством системы стальных валиков (отрезков труб), соединённых между собой с помощью шарниров или конических зубчатых передач;

Гидравлическая, в которой используется объёмный гидропривод;

Электрическая, состоящая из системы самосинхронизирующихся двигателей – при вращении штурвала в роторе передающего двигателя (генератора) возбуждается ток, вызывающей вращение ротора приёмника, соединённого с исполнительным механизмом рулевой машины.

Из различных типов рулевых машин наибольшее распространение получили электрические и электрогидравлические рулевые машины.

Наиболее распространёнными на современных судах являются электрогидравлические четырёхплунжерные рулевые машины с поперечно-румпельным рулевым приводом. Конструкция такой ЭГРМ с механической обратной связью приведена на рисунке 3.1.4.


Рис. 3.1.4 Электрогидравлическая рулевая машина (ЭГРМ)

Два идентичных исполнительных механизма ИМ (приводимых в действие электродвигателями 11 от двух электрических линий управления) работают на один выходной управляющий элемент – шток 12. Перемещение штока h (являющееся заданием на перекладку руля) с помощью рычагов BD и FG, соединённых в точке С, и штанги 17 передаётся насосам регулируемой подачи 8, приводимых в действие электродвигателями 7. Насосы согласно полученным перемещениям е 1 и е 2 регулируемых органов создают подачу Q 1 и Q 2 соответственно.

При работе насосов в цилиндрах рулевой машины 6 создаётся перепад давлений р 1 – р 2 , в результате чего баллер 3 посредством плунжеров 5 и румпеля 2 поворачивается, и руль 1 перекладывается на некоторый угол a.

При этом обратная механическая связь 4 возвращает посредством рычагов DB и FG штангу 17 в исходное среднее положение, в котором суммарное перемещение регулируемых органов насосов е = 0. Давления в полостях цилиндров выравниваются, перемещение руля останавливается и поддерживается заданный угол a. Таким образом, данная ЭГРМ с механической обратной связью представляет собой автономную следящую систему, включённую последовательно замкнутому контуру электрической системы управления.

Указатели положения руля на мостике получают электрический сигнал от датчика 14, приводимого в действие рычагом 13, соединённым со штоком 12.

Для согласования нулевых положений штанги и управляемых органов насосов служит регулировочное устройство, состоящее из винтовых соединений 15 и 16 на концах штанги NL. Серьги AB и HG компенсируют взаимное перемещение рычагов.

В случае отказа дистанционной системы управления рулевая машина приводится в действие штурвалом 10, соединённым с редуктором 9.

Традиционное рулевое устройство судна состоит из пера руля и деталей, обеспечивающих его перекладку на требуемый угол поворота. К этим деталям относятся штурвал, штуртрос, ролики, румпель, баллер и перо руля (рис. 2.17. ).

Рис. 2.17. Схема традиционного рулевого устройства:
1 - штурвал; 2 - штуртрос; 3 - направляющие ролики; 4 - румпель секторного типа; 5 - баллер; 6 - перо руля

Современное рулевое устройство состоит из руля, рулевой машинки, боудена и кронштейна крепления боудена (рис. 2.18. ).

Рис. 2.18. Схема современного рулевого устройства: 1 - рулевой редуктор; 2 - кронштейн крепления; 3 - рулевое колесо; 4 - рулевой боуден

Рули бывают пассивными (традиционные) и активными (подвесной лодочный мотор (далее - ПЛМ), поворотно-откидная колонка (далее - ПОК) или водомет). Рули (пассивные) бывают различных типов (рис. 2.19. ).

Рис. 2.19. Типы пассивных рулей:
а - навесной на транце; б - подвесной балансирный; в - полубалансирный

Перо руля закрепляется на баллере, служащем для поворота пера руля на задаваемые углы. Перо руля может состоять из одной плоской пластины (пластинчатый руль) или иметь полую обтекаемую форму. На верхнюю часть баллера насаживается румпель в виде рычага для управления.

Для чего необходимы балансирный и полубалансирный рули? Во время движения судна на перо руля, отклоненное от диаметральной плоскости, давит сила, возникающая от обтекания водой. Эта подъемная сила, направленная горизонтально, сосредотачивается в одной точке - точке приложения всех равнодействующих сил давления. Она располагается примерно на 1/3 от передней кромки пера руля. Таким образом, чем ближе к баллеру располагается точка приложения сил давления, тем меньшее усилие передается от пера руля через баллер и румпель на штуртрос и далее на штурвал.

Рули могут не иметь снизу точки опоры или опираться на «пятку». На водоизмещающих судах устанавливают подвесные полубалансирные и балансирные рули. Рулевое устройство состоит из штурвала, на валу которого закреплен барабан штуртроса, который проложен по роликам вдоль бортов катера к корме и крепится там к сектору, ПЛМ или ПОК. Штуртрос состоит из гибкого стального, иногда оцинкованного троса диаметром 3-6 мм. На барабан штурвала штуртрос навивается несколькими шлагами (витками) и контрится.

На роликах штуртрос обычно испытывает значительное трение, ввиду чего нужна постоянная смазка. Существенный недостаток штуртросной проводки: она быстро вытягивается, появляется «слабина». Это устраняется при помощи подтягивания талрепов. На мотолодках до 5 метров вместо талрепов иногда ставят натяжные пружины. Штуртрос проводится так, чтобы на переднем ходу вращение штурвального колеса в какую-либо сторону вызывало отклонение носовой части судна в ту же сторону. Натяжение и прокладка штуртроса должны быть такими, чтобы исключить его «набегание» на реборды роликов, а также его касание с конструкциями судна. Диаметр роликов по ручейку не должен быть меньше 15-18 диаметров троса. Штуртрос не должен препятствовать откидыванию ПЛМ и ПОК при дистанционном рулевом управлении ими. В настоящее время на новых моторных судах штуртросовая проводка применяется редко. На современных судах устанавливаются рулевые устройства с боуденами. Схема устройства боуденов и разновидности кронштейнов на рис. 2.20.

Рис. 2.20. Схема устройства боуденов

На рисунке показано принципиальное устройство боудена. В зависимости oт назначения, т. е. усилия и расстояния, на которое оно передается, конструкция боуденов может быть различной. Боудены существуют двух видов - рулевой и управления газом и реверсом. Те и другие также существуют трех типов: для небольших усилий на коротких расстояниях, средние и для наиболее нагруженных конструкций на удаленном расстоянии. Как правило, рулевые боудены поставляют длиной от 8 до 22 футов с интервалом в один фут.

Рулевые машинки (редукторы) также существуют двух видов - обычные системы и рулевые управления с функцией NFB, т. е. фиксируются в остановленном положении и без помощи штурвала в первоначальное положение руль не возвращается. Соответственно тот и другой вид машинки существует нескольких типов, в том числе способных работать в паре. Если посты управления в каюте и на палубе, можно установить машинки, работающие параллельно. Рулевую машинку, а, следовательно, и рулевое колесо (штурвал) не зависимо от наклона конструкции судна, к которой крепится рулевая машинка, можно установить под углом, удобным водителю. Боуден рулевого управления может крепиться на самом моторе (если есть детали крепления), на транце судна и стенке подмоторной ниши в зависимости от особенностей конструкции судна. В соответствии с этим выбирается конструкция рычага (тяги), которая поворачивает мотор (см. рис. 2.20.). Какой длины нужен рулевой боуден - см. рис. 2.21.

Рис. 2.21. Схема выбора длины боуденов

Еще одна деталь рулевого управления. Если на судно устанавливается два мотора, они должны быть соединены траверсой (специальной тягой) для синхронного поворота обеих моторов. Современные водоизмещающие суда и относительно большие глиссирующие суда (более 10 м) оборудуются подруливающим устройством. В носовой подводной части, поперек судна, располагается туннель (труба). Внутри туннеля, в диаметральной плоскости, расположен гребной винт, приводимый в движение электромотором, который при включении создаст тягу, направленную поперек корпуса судна в ту или другую сторону. В кормовой части подруливающее устройство чаще устанавливается на транец в виде отдельного агрегата чуть выше уровня днища судна.