Obd ii разъем. Распиновка OBD2 разъема

Современный автомобиль представляет сложный электронно-механический комплекс. Определение неисправного узла или механизма в таком комплексе без помощи специального диагностического оборудования требует больших трудозатрат, а во многих случаях и вовсе невозможно.

Поэтому практически все производимые транспортные средства оборудуются интерфейсами для подключения к диагностическим устройствам. К наиболее распространенным элементам таких интерфейсов относится разъем OBD2.

Что такое диагностический разъем по стандарту OBD2

Немного истории

Впервые производители серьезно задумались об автоматизации диагностики автомобиля в 70-х годах. Именно тогда появились электронные блоки управления двигателей. Они стали оснащаться системами самодиагностики и диагностическими разъемами. Замыкая контакты разъема, можно произвести с помощью блинк-кодов диагностику неисправности блоков управления двигателя. По мере внедрения персональной компьютерной техники были разработаны диагностические устройства для сопряжения разъемов с компьютерами.

Появление на рынке автомобилей новых производителей, расширяющаяся конкуренция предопределили необходимость унификации диагностических устройств. Первым производителем, который всерьез подошел к решению этой задачи, был General Motors, который ввел в 1980 году универсальный протокол обмена информации по интерфейсу ALDL Assembly Line Diagnostic Link.

В 86-м году протокол немного усовершенствовали, увеличив объем и скорость передачи информации. Уже в 1991 году в американском штате Калифорния ввели регламент, согласно которому все продаваемые здесь авто следовали протоколу OBD1. Это была аббревиатура On-Board Diagnostic, то есть бортовая диагностика. Она значительно упростила жизнь фирмам, обслуживающим транспортные средства. Этот протокол еще не регламентировал вид разъема, его расположение, протоколы ошибок.

В 1996 году действие обновленного протокола OBD2 уже распространилось на всю Америку. Поэтому производители, желающие освоить американский рынок, были просто вынуждены ему соответствовать.

Увидев явное преимущество процесса унификации ремонта и обслуживания авто, стандарт OBD2 был распространен на все транспортные средства с бензиновыми двигателями, продаваемые в Европе с 2000 года. В 2004 году обязательный стандарт OBD2 распространен на дизельные авто. Одновременно он был дополнен стандартами Controller Area Network для шин обмена данными.

Интерфейс

Неправильно полагать, что интерфейс и разъем OBD2 есть одно и то же. В понятие интерфейса входит:

  • непосредственно сам разъем, включая все электрические подключения;
  • система команд и протоколов обмена информации между блоками управления и программно-диагностическими комплексами;
  • стандарты выполнения и расположения разъемов.

Не обязательно разъем OBD2 должен быть выполнен в 16-ти пиновом трапециевидном исполнении. На многих грузовых и коммерческих авто они имеют другую конструкцию, но основные шины передачи в них также унифицированы.

В легковых автомобилях до 2000 года выпуска производитель мог самостоятельно определять форму OBD-разъема. Например, на некоторых автомобилях MAZDA нестандартизированный разъем применялся вплоть до 2003 года выпуска.

Четкое место установки разъема также не регламентировано. Стандарт указывает: в пределах досягаемости водителя. Более конкретно: не далее 1 метра от руля.

Это часто доставляет трудность для неопытных автоэлектриков. Наиболее частые расположения разъема:

  • около левого колена водителя под приборной панелью;
  • под пепельницей;
  • под одной из заглушек на консоли или под приборной панелью (в некоторых моделях VW);
  • под рычагом ручника (часто у ранних OPEL);
  • в подлокотнике (бывает у Рено).

Точное расположение диагностического разъема для своего автомобиля можно найти в справочниках или просто «погуглить».

В практике автоэлектрика имеются случаи, когда разъем в процессе ремонтов после аварий либо модификации кузова или салона был просто отрезан или перенесен в иное место. В таком случае требуется его восстановление, руководствуясь электрической схемой.

Распиновка (схема подключения) OBD2 разъема

Схема подключения выводов стандартного OBD2 16-ти пинового разъема, используемого в большинстве современных легковых автомобилей, представлена на рисунке:

Назначение выводов:

  1. шина J1850;
  2. устанавливается производителем;
  3. масса авто;
  4. сигнальная земля;
  5. CAN-шина высокий уровень;
  6. K-Line шина;
  7. устанавливается производителем;
  8. устанавливается производителем;
  9. шина J1850;
  10. устанавливается производителем;
  11. устанавливается производителем;
  12. устанавливается производителем;
  13. шина CAN J2284;
  14. L-Line шина;
  15. плюс с АКБ.

Основные при диагностировании это CAN и K-L-Line шины. В процессе проведения диагностических работ они путем обмена информации по соответствующим протоколам опрашивают блоки управления автомобиля, получая информацию об ошибках в виде унифицированных кодов.

В некоторых случаях диагностическое устройство не может связаться с блоками управления. Это чаще всего связано с неисправностью CAN-шины: коротким замыканием или обрывом. Часто CAN-шину замыкают неисправности в блоках управления, например, ABS. Эту проблему можно решить отключением отдельных блоков.

Если потеряна связь по OBD-диагностике, сначала проверяют, родная ли магнитола установлена на авто. Иногда нештатная автомагнитола закорачивает К-Line шину.

Для большей верности при этом необходимо отключить магнитолу.

К выводам, назначение которых определяет производитель, обычно напрямую подключаются диагностические сигналы конкретных блоков управления (ABS, подушек безопасности SRS, кузовом и др.)

Подключение через переходники

В случае, если на автомобиль установлен нестандартный разъем (выпуск авто до 2000 года либо грузовой или коммерческий автотранспорт), можно воспользоваться специальными переходниками или изготовить их самостоятельно.

В интернете можно найти схему перекоммутации выводов разъема подобно показанной на рисунке:

Если автомобиль находится в постоянной эксплуатации или для профессиональной работы в качестве автоэлектрика проще приобрести переходник (комплект переходников).

Для диагностического сканера AUTOCOM они имеют вид:

В минимальный стандартный набор для легковых авто входит восемь переходников. Один разъем переходника подключается к OBD разъему автомобиля, другой – к OBD диагностическому кабелю либо напрямую к BLUETOOTH ELM 327 сканеру.

Не во всех случаях использование переходников обеспечивает диагностирование автомобиля. Некоторые автомобили не обеспечивают сопряжение по OBD-протоколу, несмотря на то, что могут быть подключены к OBD-разъему. Это больше относится к пожилым авто.

Общий алгоритм диагностики автомобиля

Для диагностики потребуется автосканер, устройство отображения информации (ноутбук, смартфон) и соответствующее программное обеспечение.

Порядок проведения диагностических работ:

  1. Производится подключение OBD-кабеля к диагностическому разъему автомобиля и автосканеру. На сканере при подключении должен загореться сигнальный светодиод, свидетельствующий о подаче напряжения +12 Вольт на сканер. Если вывод +12 Вольт на разъеме не подключен, диагностирование невозможно. Следует искать причину отсутствия напряжения на 16 выводе диагностического разъема. Возможной причиной может быть неисправность предохранителя. Сканер (если это не самостоятельное устройство) подключается к ноутбуку. На компьютере загружается программное обеспечение для диагностических работ.
  2. В интерфейсной программе выбирается марка авто, двигателя, год выпуска.
  3. Включается зажигание, ожидается окончание самодиагностических работ авто (пока моргают лампочки на приборной панели).
  4. Производится запуск статического сканирования ошибок. В процессе диагностирования на сканере будет сигнализироваться морганием светодиодов процесс диагностики. Если этого не происходит, скорее всего, диагностика будет неуспешной.
  5. По окончании сканирования программа выдает коды ошибок. Во многих программах они сопровождаются русифицированной расшифровкой, иногда не следует им полностью доверять.
  6. Следует записать все коды ошибок до их удаления. Они могут удалиться, через некоторое время появиться вновь. Так часто случается в системе ABS.
  7. Удалить (точнее потереть) ошибки. Такая опция есть во всех сканерах. После этой операции неактивные ошибки удалятся.
  8. Выключить зажигание. Через пару минут вновь включить зажигание. Произвести запуск двигателя, дать поработать минут пять, лучше произвести контрольный заезд метров на пятьсот с обязательным произведением поворотов вправо-влево и торможением, движением задним ходом, включением световых сигналов и прочих опций для максимального опроса всех систем.
  9. Произвести повторное сканирование. Сравнить вновь «набитые» ошибки с предыдущими. Оставшиеся ошибки будут активными, их необходимо устранять.
  10. Заглушить авто.
  11. Произвести повторное дешифрование ошибок с помощью специальных программ или интернета.
  12. Включить зажигание, запустить двигатель, выполнить динамическую диагностику двигателя. Большинство сканеров позволяют в динамическом режиме (на запущенном двигателе, изменении положения педалей акселератора, тормоза, других органов управления) измерять параметры впрыска, угла зажигания и другие. Эти сведения более полно описывают работу автомобиля. Для расшифровки полученных диаграмм требуются навыки автоэлектрика и моториста.

Видео — процесс проверки автомобиля через диагностический разъем ОБД 2 с помощью Launch X431:

Как расшифровать коды ошибок

Большинство кодов ошибок OBD унифицировано, то есть определенному коду ошибки соответствует одна и та же расшифровка.

Общая структура кода ошибки имеет вид:

В некоторых автомобилях запись ошибки имеет специфический вид. Надежнее скачать коды ошибок в интернете. Но делать это для всех ошибок в большинстве случаев будет лишним. Можно воспользоваться специальными программами типа AUTODATA 4.45 либо аналогичными. В них помимо расшифровки указываются возможные причины, правда, лаконично, и на английском языке.

Проще, надежнее и информативнее ввести в поисковике, например, «ошибка P1504 Opel Verctra 1998 1,9 Б», то есть указать сокращенно все сведения об авто и код ошибки. Результатом поиска будут отрывочные сведения на различных форумах, других сайтах. Не следует сразу слепо следовать всем рекомендациям. Но, подобно мнению зала на известной программе, многие из них будут правдоподобными. К тому же, вы можете получить видео- и графическую информацию, иногда крайне полезную.

Until August http://thisav.fun/ thisav.com The shutdown might last two weeks and approach the Oct. 17date Lew mentioned, "then the whole thing ratchets up inintensity," said David Kotok, chairman and chief investmentofficer at Cumberland Advisors in Sarasota, Florida.

Three years http://efukt.fun/ efukt porn Her recent role as the family breadwinner was not lost on “RHONJ” viewers, who’ve watched Joe Giudice struggle over four seasons since 2009 to keep his failing business ventures afloat while his wife suddenly developed a Midas touch.

Grace написал
в статье

Could I ask who"s calling? http://silverdaddies.fun/ silver daddies If I can"t make a phone, text, credit card transaction without the Federal Government tracking it (and me by cell phone GPS records) and using that information to profile me then that is taking away my freedom.

Malcom написал
в статье

Another service? http://lamalinks.fun/ lamalink Start with the flatbreads. If you don’t have the time then buy some good-quality tortilla or pitta. Mix half the water with the flour, salt and oil and let it sit for 10 minutes. Slowly add more water, kneading the dough until you have an elastic, tacky dough that becomes smooth when rested. Cover with a damp cloth and rest for 30 minutes.

Stephanie написал
в статье

How many weeks" holiday a year are there? http://rulertube.fun/ rulertube.com Richards is coming off a demoralizing lockout-shortened 2012-13 season. In the playoffs, Tortorella – Richards" coach with the 2004 Stanley Cup champion Tampa Bay Lightning who was integral in attracting Richards to New York – demoted the veteran center to the fourth line toward the end of the first-round and then scratched Richards for the final two games of the Rangers" second-round loss to the Boston Bruins.

Dusty написал
в статье

Who would I report to? http://lamalinks.fun/ lama nudes NFLPA executive director DeMaurice Smith issued this statement to FOX Sports on Wednesday: "What does neutral arbitration add but more credibility? The majority of the policy that they already agreed to allows the Commissioner to impose discipline but an appeal is subject to neutral arbitration if the player so chooses. The players don"t want an exception to the rule."

How do you know each other? http://12yo.icu/ 12yo Still, the changes don"t address questions Facebook has faced over the amount of data it collects about teens on its site. Privacy groups recently sent a letter to the Federal Trade Commission asking the agency to evaluate Facebook’s policies on this issue, and have the network create separate policies for teens on the issue of data collection.

Fidel написал
в статье

I"d like to cancel a cheque http://keezmovies.in.net/ keez movie But the young Republican said she wanted to be careful not to make the show political or one that "lectures or preaches" to young people - rather, she wants it to open discussions she said she grew up hearing on television.

Anibal написал
в статье

Could you transfer $1000 from my current account to my deposit account? http://9taxi.in.net/ www.9taxi.com Otherwise, it warned, the Help to Buy programme "risks recreating the perverse incentives that led to the 2000s-era US housing bubble"" and subsequent subprime mortgage crisis, a major factor in the worldwide financial crash of recent years.

The National Gallery http://xnxx-xnxx.space/ indian xnxx A person with direct knowledge said Summers had been an adviser to Nasdaq for "a number of years," but would not be more specific. The person asked to remain anonymous because of the sensitivity of the matter.

Все современные авто, особенно после 1996 года выпуска, включают в себя систему диагностики по универсальному протоколу OBD - OBD-II. Данные устройства могут быть построены на базе компьютера с интерфейсом, который подключается к 16-ти контактному диагностическому разъему. Диагностика и самотестирование в системах OBD 2 осуществляется подпрограммой, которая называется Diagnostic Executive . Подпрограмма с помощью специальных мониторов контролирует несколько различных систем авто, неисправность в работе которых может привести к увеличению токсичности выбросов. Подпрограмма выполняется в фоновом режиме - в то время, когда бортовой компьютер не занят выполнением основных функций управления.

Коды ошибок включают в себя категории:

"P" - is for powertrain codes;
"B" - is for body codes;
"C" - is for chassis codes.

Категория указывается в первой позиции пятизначного кода ошибки. Вторая позиция в этом коде говорит о стандарте, где "0" - общий для OBD-II код или "1" - если код производителя. Третья позиция - тип неисправности:

"1" и "2" - неисправности в топливной системе или воздухоподачи;
"3" - проблемы в системе зажигания;
"4" - для вспомогательного контроля эмиссии;
"5" - проблемы холостого хода;
"6" - неисправности контроллера или его выходных цепей;
"7" и "8" - неисправности трансмиссии.

Список кодов ошибок OBD

P0 1XX FUEL AND AIR METERING Измерители топлива и воздуха
PO 100 MAF or VAF CIRCUIT MALFUNCTION Неисправность цепи датчика расхода воздуха
PO 101 MAF or VAF CIRCUIT RANGE/PERF PROBLEM Выход сигнала из допустимого диапазона
PO 102 MAF or VAF CIRCUIT LOW INPUT Низкий уровень выходного сигнала
PO 103 MAF or VAF CIRCUIT HIGH INPUT Высокий уровень выходного сигнала
PO 105 MAP/BARO CIRCUIT MALFUNCTION Неисправность датчика давления воздуха
PO 106 MAP/BARO CIRCUIT RANGE/PERF PROBLEM Выход сигнала из допустимого диапазона
PO 107 MAP/BARO CIRCUIT LOW INPUT Низкий уровень выходного сигнала
PO 108 MAP/BARO CIRCUIT HIGH INPUT Высокий уровень выходного сигнала
PO 110 IAT CIRCUIT MALFUNCTION Неисправность датчика температуры всасываемого воздуха
PO 111 IAT RANGE/PERF PROBLEM Выход сигнала из допустимого диапазона
PO 112 IAT CIRCUIT LOW INPUT Низкий уровень выходного сигнала
PO 113 IAT CIRCUIT HIGH INPUT Высокий уровень выходного сигнала
PO 115 ECT CIRCUIT MALFUNCTION Неисправность датчика температуры охлаждающей жидкости
PO 116 ECT RANGE/PERF PROBLEM Выход сигнала из допустимого диапазона
PO 117 ECT CIRCUIT LOW INPUT Низкий уровень выходного сигнала
PO 118 ECT CIRCUIT HIGH INPUT Высокий уровень выходного сигнала
PO 120 TPS SENSOR A CIRCUIT MALFUNCTION Неисправность датчика положения дроссельной заслонки
PO 121 TPS SENSOR A RANGE/PERF PROBLEM Выход сигнала из допустимого диапазона
PO 122 TPS SENS A CIRCUIT LOW INPUT Низкий уровень выходного сигнала
PO 123 TPS SENS A CIRCUIT HIGH INPUT Высокий уровень выходного сигнала
PO 125 LOW ECT FOR CLOSED LOOP FUEL CONTROL Низкая температуры охлаждающей жид. для упр.по замкн.контуру
PO 130 02 SENSOR B1 S1 MALFUNCTION Датчик О2 В1 S1 несправен(Банк1)
PO 131 02 SENSOR B1 S1 LOW VOLTAGE Датчик О2 В1 S1 имеет низкий уровень сигнала
PO 132 02 SENSOR B1 S1 HIGH VOLTAGE Датчик О2 В1 S1 имеет высокий уровень сигнала
PO 133 02 SENSOR B1 S1 SLOW RESPONSE Датчик О2 В1 S1 имеет медленный отклик на обогащение/обеднение
PO 134 02 SENSOR B1 S1 CIRCUIT INACTIVE Цепь датчика О2 В1 S1 пассивна
PO 135 02 SENSOR B1 S1 HEATER MALFUNCTION Нагреватель датчика О2 В1 S1 несправен
PO 136 02 SENSOR B1 S2 MALFUNCTION Датчик О2 В1 S2 несправен
PO 137 02 SENSOR B1 S2 LOW VOLTAGE Датчик О2 В1 S2 имеет низкий уровень сигнала
PO 138 02 SENSOR B1 S2 HIGH VOLTAGE Датчик О2 В1 S2 имеет высокий уровень сигнала
PO 139 02 SENSOR B1 S2 SLOW RESPONSE Датчик О2 В1 S2 имеет медленный отклик на обогащение/обеднение
PO 140 02 SENSOR B1 S2 CIRCUIT INACTIVE Цепь датчика О2 В1 S2 пассивна
PO 141 02 SENSOR B1 S2 HEATER MALFUNCTION Нагреватель датчика О2 В1 S2 несправен
PO 142 02 SENSOR B1 S3 MALFUNCTION Датчик О2 В1 S3 несправен
PO 143 02 SENSOR B1 S3 LOW VOLTAGE Датчик О2 В1 S3 имеет низкий уровень сигнала
PO 144 02 SENSOR B1 S3 HIGH VOLTAGE Датчик О2 В1 S3 имеет высокий уровень сигнала
PO 145 02 SENSOR B1 S3 SLOW RESPONSE Датчик О2 В1 S3 имеет медленный отклик на обогащение/обеднение
PO 146 02 SENSOR B1 S3 CIRCUIT INACTIVE Цепь датчика О2 В1 S3 пассивна
PO 147 02 SENSOR B1 S3 HEATER MALFUNCTION Нагреватель датчика О2 В1 S3 несправен
PO 150 02 SENSOR B2 S1 CIRCUIT MALFUNCTION Датчик О2 В2 S1 несправен (Банк2)
PO 151 02 SENSOR B2 S1 CKT LOW VOLTAGE Датчик О2 В2 S1 имеет низкий уровень сигнала
PO 152 02 SENSOR B2 S1 CKT HIGH VOLTAGE Датчик О2 В2 S1 имеет высокий уровень сигнала
PO 153 02 SENSOR B2 S1 CKT SLOW RESPONSE Датчик О2 В2 S1 имеет медленный отклик на обогащение/обеднение
PO 154 02 SENSOR B2 S1 CIRCUIT INACTIVE Цепь датчика О2 В2 S1 пассивна
PO 155 02 SENSOR B2 S1 HTR CKT MALFUNCTION Нагреватель датчика О2 В2 S1 несправен
PO 156 02 SENSOR B2 S2 CIRCUIT MALFUNCTION Датчик О2 В2 S2 несправен
PO 157 02 SENSOR B2 S2 CKT LOW VOLTAGE Датчик О2 В2 S2 имеет низкий уровень сигнала
PO 158 02 SENSOR B2 S2 CKT HIGH VOLTAGE Датчик О2 В2 S2 имеет высокий уровень сигнала
PO 159 02 SENSOR B2 S2 CKT SLOW RESPONSE Датчик О2 В2 S2 имеет медленный отклик на обогащение/обеднение
PO 160 02 SENSOR B2 S2 CIRCUIT INACTIVE Цепь датчика О2 В2 S2 пассивна
PO 161 02 SENSOR B2 S2 HTR CKT MALFUNCTION Нагреватель датчика О2 В2 S2 несправен
PO 162 02 SENSOR B2 S3 CIRCUIT MALFUNCTION Датчик О2 В2 S3 несправен
PO 163 02 SENSOR B2 S3 CKT LOW VOLTAGE Датчик О2 В2 S3 имеет низкий уровень сигнала
PO 164 02 SENSOR B2 S3 CKT HIGH VOLTAGE Датчик О2 В2 S3 имеет высокий уровень сигнала
PO 165 02 SENSOR B2 S3 CKT SLOW RESPONSE Датчик О2 В2 S3 имеет медленный отклик на обогащение/обеднение
PO 166 02 SENSOR B2 S3 CIRCUIT INACTIVE Цепь датчика О2 В2 S3 пассивна
PO 167 02 SENSOR B2 S3 HTR CKT MALFUNCTION Нагреватель датчика О2 В2 S3 несправен
PO 170 BANK 1 FUEL TRIM MALFUNCTION Утечка топлива из топливной системы блока №1
PO 171 BANK 1 SYSTEM TOO LEAN Блок цилиндров №1 беднит (возможно подсос воздуха)
PO 172 BANK 1 SYSTEM TOO RICH Блок цилиндров №1 богатит (возможно неполное закрытие форсунки)
PO 173 BANK 2 FUEL TRIM MALFUNCTION Утечка топлива из топливной системы блока №2
PO 174 BANK 2 SYSTEM TOO LEAN Блок цилиндров №2 беднит (возможно подсос воздуха)
PO 175 BANK 2 SYSTEM TOO RICH Блок цилиндров №2 богатит (возможно неполное закрытие форсунки)
PO 176 FUEL COMPOSITION SENSOR MALFUNCTION Датчик выброса СНх неисправен
PO 177 FUEL COMPOSITION SENS CKT RANGE/PERF Сигнал датчика выходит из допустимого диапазона
PO 178 FUEL COMPOSITION LOW INPUT Низкий уровень сигнала датчика СНх
PO 179 FUEL COMPOSITION HIGH INPUT Высокий уровень сигнала датчика СНх
PO 180 FUEL TEMP SENSOR A CIRCUIT MALFUNCTION Цепь датчика температуры топлива «А» неисправна
PO 181 FUEL TEMP SENSOR A CIRCUIT RANGE/PERF Сигнал датчика «А» выходит из допустимого диапазона
PO 182 FUEL TEMP SENSOR A LOW INPUT Низкий сигнал датчика температуры топлива «А»
PO 183 FUEL TEMP SENSOR A HIGH INPUT Высокий сигнал датчика температуры топлива «А»
PO 185 FUEL TEMP SENSOR B CIRCUIT MALFUNCTION Цепь датчика температуры топлива «В» неисправна
PO 186 FUEL TEMP SENSOR RANGE/PERF Сигнал датчика «В» выходит из допустимого диапазона
PO 187 FUEL TEMP SENSOR B LOW INPUT Низкий сигнал датчика температуры топлива «В»
PO 188 FUEL TEMP SENSOR B HIGH INPUT Высокий сигнал датчика температуры топлива «В»
PO 190 FUEL RAIL PRESSURE CIRCUIT MALFUNCTION Цепь датчика давления топлива в топливной рампе неисправна
PO 191 FUEL RAIL CIRCUIT RANGE/PERF Сигнал датчика выходит из допустимого диапазона
PO 192 FUEL RAIL PRESSURE LOW INPUT Низкий сигнал датчика давления топлива
PO 193 FUEL RAIL PRESSURE HIGH INPUT Высокий сигнал датчика давления топлива
PO 194 FUEL RAIL PRESSURE CKT INTERMITTENT Сигнал датчика давления топлива перемежающийся
PO 195 ENGINE OIL TEMP SENSOR MALFUNCTION Цепь датчика температуры масла в двигателе неисправна
PO 196 ENGINE OIL TEMP SENSOR RANGE/PERF Сигнал датчика выходит из допустимого диапазона
PO 197 ENGINE OIL TEMP SENSOR LOW Низкий сигнал датчика температуры масла
PO 198 ENGINE OIL TEMP SENSOR HIGH Высокий сигнал датчика температуры масла
PO 199 ENGINE OIL TEMP SENSOR INTERMITTENT Сигнал датчика температуры масла перемежающийся
PO 2XX FUEL AND AIR METERING
PO 200 INJECTOR CIRCUIT MALFUNCTION Цепь управления форсункой неисправна

Остальные коды неисправностей .

Контакт Описание

1 OEM
2 J1850 Шина+ (Bus + Line, SAE)
3 OEM
4 Заземление кузова
5 Сигнальное заземление
6 Верхний контакт CAN (J-2284)
7 K Line ISO 9141-2
8 OEM
9 OEM
10 Bus - Line, Sae J1850 Шина
11 OEM
12 OEM
13 OEM
14 Нижний контакт CAN (J-2284)
15 L Line ISO 9141-2
16 Напряжение АКБ

Обращаем внимание на то, что наличие разъема не является 100% признаком совместимости с OBD 2. Автомобили, оборудованные этой системой обязательно должны иметь отметку в сопроводительной документации. Чаще всего используемый протокол можно определить по наличию определенных контактов на разъеме. Распиновку OBD и других разъёмов для различных типов автомобилей можно скачать в сборнике или смотрите здесь.

Идея не новая, но вопросов много. С одной стороны, можно снять практически любые данные, а с другой стороны, OBDII похож на лоскутное одеяло, т.к. общее количество физических интерфейсов и протоколов напугает любого. А объясняется всё тем, что к моменту появления первых версий спецификаций OBD большинство автопроизводителей уже успели разработать что-то своё. Появление стандарта хоть и навело некоторый порядок, но потребовало включения в спецификацию всех интерфейсов и протоколов, которые на тот момент существовали, ну, или почти всех.

В OBDII разъёме по стандарту J1962M присутствуют три стандартных интерфейса: MS_CAN, K/L-Line, 1850, там же плюс аккумулятора и две земли (сигнальная и просто масса). Это по стандарту, остальные 7 из 16 выводов – ОЕМ, то есть каждый производитель эти выводы использует как ему заблагорассудится. Но и стандартизованные выводы зачастую имеют расширенные, продвинутые функции. Например, MS_CAN может быть HS_CAN, HS_CAN может быть на других пинах (неоговоренных стандартом) наряду со стандартным MS_CAN., Пин №1 может быть: у форда – SW_CAN, у WAGов – IGN_ON, у КИА – check_engene. И т.д. Все интерфейсы также не были стационарны в своём развитии: тот же интерфейс K –Line изначально был однонаправленным, сейчас он двунаправленный., Бодрейт CAN интерфейса также растёт. Вообще, подавляющее большинство европейских автомобилей 90-х и начала нулевых вполне себе можно было продиагностировать имея только K –Line, а большинство американских – только SAE1850. В настоящее время общий вектор развития – это всё более широкое применение CAN, повышение скорости обмена., всё чаще видим и однопроводный SW_CAN.

Существует мнение, что англоязычный программист сидя на профильных(англоязычных же) форумах, закопавшись в тексты стандартов, может за “максимум 4-5 месяцев” построить универсальный движок, который со всем этим разнообразием справится. На практике это не так. Всё равно возникает потребность сниферить каждую новую машину., иногда даже одну и ту же машину, но в разных комплектациях. И получается, что заявляют о 800-900 типах поддерживаемых автомобилей, а на практике 10-20 реально оттестированных. И это система, –в РФ автору известны, по-крайней мере, 3 команды разработчиков, пошедших по этому тернистому пути и все с одинаково плачевным результатом: нужно сниферить/кастомизировать каждую модель автомобиля, а ресурсов/средств на это нет. И причина этого вот в чем: стандарт-стандартом, а каждый производитель когда вынужденно, а когда и преднамеренно вносит в свою реализацию что-то своё, стандартом не описанное. Кроме того, не все данные по-умолчанию присутствуют на разъёме. Есть данные, появление которых нужно инициировать (дать тому или иному блоку автомобиля команду передать нужные данные).

И вот тут на сцену выходят интерпретаторы шины OBDII. Это микроконтроллер, с набором интерфейсов, соответствующих стандарту J1962M, переводящий всё многообразие данных на разных интерфейсах диагностических разъёмов в язык, более удобный для приложений, например для приложений диагностики. Иными словами, всё многообразие протоколов расшифровывается теперь приложением, не важно, на чём работающим – на компьютере с Windows или на планшете/смартфоне. Первым массовым интерпретатором OBDII с открытым протоколом стал ELM327. Это 8-ми битный микроконтроллер MicroChip PIC18F2580. Пусть читателя не удивляет тот факт, что этот микроконтроллер является массовым прибором общего применения. Прошивка как раз проприентарная и реальная стоимость “PIC18F2580+FirmWare” составляет внушительные 19-24$. То есть сканер, выполненный на “честном” чипе ELM327 не может стоить меньше, чем 50 вечнозелёных президентов. Откуда же на рынке такое разнообразие сканеров/адаптеров с ценами “от 1000рублей”, спросите Вы? А это наши китайские друзья постарались! Уж как они клонировали этот чип, травили кристалл послойно или сниферили денно и ночно – оставим за кадром. Но факт остаётся: на рынке появились клоны (для справки: 8-ми битный контроллер MicroChip в оптовых закупках ныне стоит меньше доллара). Другое дело, насколько правильно эти клоны работают. Есть мнение, что “пока народ покупает дешёвые адаптеры, автоэлектрики без работы не останутся”. То есть покупает человек адаптер с мыслью “чего-нибудь там перезалить или настроить”., а результат получает иной, ну, то есть, не тот, на который рассчитывал. Ну например, вдруг начинает всеми своими огоньками мультимедиа-система моргать, или выскакивает ошибка, или вообще коробка в аварийный режим переходит. И хорошо, если без серьезных последствий – в большинстве случаев специалист с профессиональным оборудованием вылечит железного коня. Но случается и иначе. Здесь могут смешаться сразу несколько факторов: неправильный адаптер(клон), неправильный софт, неправильная связка адаптер+софт, ну и “кривые” руки тоже свою роль сыграть могут. Замечу, что адаптер на честном чипе от производителя с правильным софтом к плачевным результатам не приведёт, по крайней мере, автору о таких случаях не известно.
А что можно сделать с помощью такого адаптера? Ну наверное, самый частый случай, положить в бардачок “на всякий случай”. Посмотреть и сбросить ошибку, коль скоро та появится. Одометр сбросить перед продажей авто, или наоборот, “накрутить” если ты наёмный водитель. Включить какую-либо опцию в автомобиле, которая по-умолчанию выключена, а у официального дилера эта услуга платная. Обновление прошивок и переконфигурирование электронных блоков, всё-таки оставим специалистам, но большинство адаптеров позволяют и это. Кому-то понравится просто иметь больше информации о параметрах работы двигателя и других систем в виде красивой графики на планшете или смартфоне. Часто встречаются на дороге, почему-то таксисты, у которых андроид-планшет установлен перед приборной панелью и полностью её перекрывает, так вот: планшет этот скорее всего подключен к такому адаптеру по блютузу или по Wi-Fi. Есть и ещё целый ряд применений, это использование такого адаптера совместно с телематическим прибором (трекером) или сигнализацией. Подключение к диагностическому разъёму посредством такого адаптера позволяет малой кровью снимать данные, необходимые для мониторинга. В большинстве случаев такой метод обходится разработчику дешевле, да и сама установка проще, ведь исчезает необходимость в установке различных датчиков, всё (ну или почти всё) можно снять с OBDII.
Другое дело, что возможности чипа в настоящее время уже недостаточны и для использования в современных автомобилях. Где-то в середине нулевых годов пошли вверх скорости обмена по шине CAN, появился SW_CAN. Но самое главное: возросла длина (количество символов) в кодовых словах. И если аппаратно можно, через реле или банальный тумблер, приляпать к ELM327 костыли, которые позволят работать и с MS и с HS да и с SW релизами CAN, то на длинные кодовые слова вычислительной мощности PIC18F2580 с его 4 MIPS явно недостаточно. К слову, последняя версия ELM327 (V1.4) датируется 2009 годом. И использовать этот чип без “костылей” можно только для автомобилей выпуска до середины нулевых. Так что же делать. Выход, как ни странно есть, причём не один.
CAN-LOG, тоже интерпретатор, но не полного набора интерфейсов OBDII, а двух CAN шин. Оказывается, этого достаточно, чтобы в большинстве случаев снять всю необходимую информацию. Правда, далеко не у всех автомобилей обе CAN шины выведены на диагностический разъём. Значит, придётся подключаться под панелью приборов. А это не всегда приемлемо из соображений сохранения гарантии, правда есть вариант беспроводного съёма информации с шины, но это ещё дороже, да и достоверность снятых данных не 100%. Можно использовать как готовый прибор, подключив его посредством УАРТа или RS232, так и просто чип, интегрировав его на плату устройства с небольшим количеством дискретных компонентов. Стоимость прибора – конечно выше, чем стоимость аутентичного ELM327, но это компенсируется огромным списком поддерживаемых автомобилей и функций. Причём в список поддерживаемых автомобилей включены не только легковые автомобили, но и также грузовики, строительная, дорожная и сельскохозяйственная техника. CAN-LOG работает несколько иначе, чем ELM327 и его клоны. При подключении к шинам автомобиля необходимо выбрать и установить номер программы, соответствующей автомобилю. И это удобно, т.к. разработчику не нужно вникать во всё многообразие протоколов. (В ELM327 выбор автомобиля и тонкая настройка чипа отданы на откуп приложению).
Существуют и иные решения, позволяющие легко и изящно снимать данные с диагностического разъёма. Ну а вопрос о том, можно ли приручить штатный диагностический разъём, и как, каждый разработчик решит сам. Для парка автомобилей одной марки, можно попытаться написать свой софт, если конечно производитель не закрывает протоколы. А если телематическое устройство будет устанавливаться на разные модели, то разумнее использовать какой-либо из OBDII интерпретаторов.

Технология OBD (On-Board Diagnostic - самодиагностика бортового оборудования) зарождалась еще в 50-х гг. прошлого века. Инициатором выступало правительство США. Для улучшения экологии были созданы различные комитеты, но положительных результатов не было достигнуто. И только в 1977 г. ситуация начала меняться. Наступил энергетический кризис и спад производства, и это потребовало от производителей решительных действий по спасению самих себя. Департамент по контролю за воздушной средой (Air Resources Board, ARB) и Агентство по защите окружающей среды (Environment Protection Agency, EPA) пришлось воспринимать всерьёз. На этом фоне и развивалась концепция диагностики OBD.

У многих сложилось мнение: OBD 2 – это разъем 16-pin. Если автомобиль из Америки, вопросов нет. А вот с Европой чуть сложнее. Ряд европейских производителей (Ford, VAG, Opel) применяют такой разъем, начиная с 1995 года (напомним, что тогда в Европе не было протокола EOBD). Диагностика этих автомобилей осуществляется исключительно по заводским протоколам обмена. Но были и такие «европейцы», которые вполне реально поддерживали протокол OBD 2 уже начиная с 1996 года, например многие модели Volvo , SAAB , Jaguar , Porsche . А вот об унификации протокола связи, или, языка, на котором «разговаривают» блок управления и сканер, можно говорить только на прикладном уровне. Коммуникационный стандарт единым делать не стали. Разрешено использовать любой из четырех распространенных протоколов – SAE J1850 PWM, SAE J 1850 VPW , ISO 9141-2, ISO 14230-4. В последнее время к этим протоколам добавился еще один – это ISO 15765-4, обеспечивающий обмен данными с использованием CAN-шины.

Следует отметить, что наличие аналогичного разъема не является 100% признаком совместимости с OBD 2. Автомобили, оборудованные этой системой обязательно должны иметь отметку на одной из табличек в подкапотном пространстве или в сопроводительной документации. Чаще всего используемый протокол можно идентифицировать по наличию определенных контактов на диагностическом разъеме. Если на этом разъеме присутствуют все контакты, следует обратиться к технической документации на конкретный автомобиль.

С применением стандартов EOBD и OBD 2 процесс диагностики электронных систем автомобиля унифицируется, теперь можно один и тот же сканер без специальных адаптеров использовать для тестирования автомобилей всех марок.

Требования стандарта OBD 2 предусматривают:

Стандартный диагностический разъем

- стандартное размещение диагностического разъема ;

Стандартный протокол обмена данными между сканером и автомобильной бортовой системой диагностики;

Сохранение в памяти ЭБУ кадра значений параметров при появлении кода ошибки («замороженный» кадр);

Мониторинг бортовыми диагностическими средствами компонентов, отказ которых может привести к увеличению токсичных выбросов в окружающую среду;

Доступ как специализированных, так и универсальных сканеров к кодам ошибок, параметрам, «замороженным» кадрам, тестирующим процедурам и т. д.;

Единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок.



В соответствии с требованиями OBD 2, бортовая диагностическая система должна обнаруживать ухудшение работы средств доочистки токсичных выбросов. Например, индикатор неисправности Check Engine включается при увеличении содержания СО или СН в токсичных выбросах на выходе каталитического нейтрализатора более чем в 1,5 раза по сравнению с допустимыми значениями. Такие же процедуры применяются и к другому оборудованию, неисправность которого может привести к увеличении токсичных выбросов.

Программное обеспечение ЭБУ двигателя современного автомобиля многоуровневое. Первый уровень - программное обеспечение функций управления, например реализация впрыска топлива. Второй уровень - программное обеспечение функции электронного резервирования основных сигналов управления при отказе управляющих систем. Третий уровень - бортовая самодиагностика и регистрация неисправностей в основных электрических и электронных узлах и блоках автомобиля. Четвертый уровень - диагностика и самотестирование в тех системах управления двигателем, неисправность в работе которых может привести к увеличению выбросов вредных веществ в окружающую среду. Диагностика и самотестирование в системах OBD 2 осуществляется подпрограммой четвертого уровня, которая называется Diagnostic Executive (Diagnostic Executive - исполнитель диагностики, далее по тексту - подпрограмма DE). Подпрограмма DE с помощью специальных мониторов (emission monitor EMM) контролирует до семи различных систем автомобиля, неисправность в работе которых может привести к увеличению токсичности выбросов. Остальные датчики и исполнительные механизмы, не вошедшие в эти семь систем, контролируются восьмым монитором (comprehensive component monitor - ССМ). Подпрограмма DE выполняется в фоновом режиме, т. е. в то время, когда бортовой компьютер не занят выполнением основных функций, - функций управления. Все восемь упомянутых мини-программ - мониторов осуществляет постоянный контроль оборудования без вмешательства человека.

Каждый монитор может осуществлять тестирование во время поездки только один раз, то есть во время цикла «ключ зажигания включен - двигатель работает - ключ выключен» при выполнении определенных условий. Критерием на начало тестирования могут быть: время после запуска двигателя, обороты двигателя, скорость автомобиля, положение дроссельной заслонки и т.д.

Многие тесты выполняются на прогретом двигателе. Производители по-разному устанавливают это условие, например, для автомобилей Ford это означает, что температура двигателя превышает 70 "С (158 °F) и в течение поездки она повысилась не менее, чем на 20 °С (36 °F).

Подпрограмма DE устанавливает порядок и очередность проведения тестов:

Отмененные тесты - подпрограмма DE выполняет некоторые вторичные тесты (тесты по программному обеспечению второго уровня) только, если прошли первичные (тесты первого уровня), в противном случае тест не выполняется, т. е. происходит отмена теста.

Конфликтующие тесты - иногда одни и те же датчики и компоненты должны быть использованы разными тестами. Подпрограмма DE не допускает проведения двух тестов одновременно, задерживая очередной тест до конца выполнения предыдущего.

Задержанные тесты - тесты и мониторы имеют различный приоритет, подпрограмма DE задержит выполнение теста с более низким приоритетом, пока не выполнит тест с более высоким приоритетом.