Модуль относительной скорости движения тел. Задачи

Тема: ИЗОПРОЦЕССЫ И ИХ ГРАФИКИ. ЗАКОНЫ ИДЕАЛЬНЫХ ГАЗОВ.

Учебно-воспитательные задачи

Дидактическая цель

    Научить учащихся применять уравнение Клайперона-Менделеева к частным случаям измерения процессов в газах.

    Дать понятие изопроцесса, формулы газовых законов и графики зависимости переменных параметров в различных координатных осях этих параметров при разных изопроцессах.

Воспитательная цель

Научить применять причинно-следственную категорию материалистической диалектики при объяснении изменения давления газа с изменением объема и температуры с точки зрения молекулярно-кинетической теории.

Основные знания и умения

    Уметь устанавливать параметры начального, промежуточного и конечного состояний газа, функциональные зависимости в газовых процессах и решать задачи на нахождение неизвестных параметров.

    Строить и анализировать графики изопроцессов в газе.

Последовательность изложения нового материала

    Провести повторение ранее изученного материала зависимости давления газа от концентрации и скоростей поступательного движения молекул

    Ввод уравнения состояния газа с переменными параметрами: массы, объема, давления и температуры.

    Уравнение состояния газа при неизменной его массе.

    Понятие изопроцессов в газах. Определение и их виды.

    Изотермический процесс. Закон Бойля-Мариотта.

    Изобарный процесс. Закон Гей-Люссака.

    Изохорный процесс. Закон Шарля.

Оборудование

Цилиндр переменного объема; манометр демонстрационный; трубка резиновая; стеклянная колба с пробкой, через которую пропущена Г-образная стеклянная трубка с каплей воды; электрическая плитка; термометр; сосуд с водой.

Демонстрации

Зависимость между объемом и давлением газа при постоянной температуре (изотермический процесс), зависимость объема газа от температуры при постоянном давлении (изобарный процесс), зависимость давления газа от температуры при постоянном объеме (изохорный процесс). Все демонстрации проводятся для показа качественной зависимости между переменными параметрами газа.

Мотивация познавательной деятельности учащихся

В технике часто встречаются процессы, когда изменение состояния газа происходит при одном постоянном параметре или малыми изменениями этого параметра пренебрегают. В этом случае очень важно знать, как протекает изопроцесс.

План занятия

Проверка знаний, умений и навыков учащихся

Карточки для устного опроса учащихся

Карточка 1

    Вывести уравнение Клайперона-Менделеева для одного моля газа.

    Какова зависимость между молярной газовой постоянной, постоянной Авогадро и постоянной Больцмана?

    Определить среднюю квадратичную скорость движения молекулы кислорода, если он производит давление 2 ∙ 10 5 Па при концентрации молекул 4 ∙ 10 25 м –3 . Ответ. ν = 530 м/с.

Карточка 2

    Вывести уравнение Клайперона-Менделеева для любой массы газа.

    Как зависит давление газа от температуры при постоянной концентрации молекул? Ответ. p = n0kT . Давление прямо пропорционально термодинамической температуре газа.

    Сколько молекул газа находится в сосуде, вместимость которого 138 л при температуре 27 о С и давлении 6 ∙ 10 5 Па? Ответ. n = 2 ∙ 10 25 .

Карточка 3

    1. Вывести формулу зависимости кинетической энергии молекулы газа от температуры.

      Как зависит давление газа от концентрации молекул? Почему?

      Определить концентрацию молекул газа при давлении 2,76∙10 6 = Па и температуре 200 К. О т в е т. n 0 = 10 27 м -3 .

Карточка 4

1) Каков физический смысл постоянной Больцмана и молярной газовой постоянной? Чему они равны в СИ?

2) Почему давление реального газа зависит от рода самого газа?

3) Температура ионов плазмы в центре звезды 10 6 К. Определить среднюю кинетическую энергию каждого иона этой плазмы. О т в е т. Ē к = 2,07∙10 -16 Дж.

Изучение нового материала

1. Провести вступительную беседу со следующими вопросами:

1) Что выражает основное уравнение молекулярно-кинетической теории газа?

2) От чего зависит давление газа на стенки сосуда?

3) По какой формуле вычисляется концентрация молекул газа?

4) Объяснить с точки зрения молекулярно-кинетической теории зависимость давления газа от концентрации молекул и скорости их движения?

2. Уравнение состояния газа с переменными параметрами массы, объема, давления и температуры. Пусть параметры начального (одного) состояния газа m 1 , p 1 , V 1 и Т 1 , параметры конечного (другого) состояния m 2 , p 2 , V 2 и Т 2 . Запишем уравнения Клайперона-Менделеева для каждого состояния газа:

P 1 V 1 = RT ; p 2 V 2 = RT 2 .

Разделив почленно, получим:

Решить задачу:

Некоторая масса газа при давлении 3∙10 5 Па и температуре 300 К. Затем ⅜ содержащегося в баллоне газа выпустили, при этом температура его понизилась до 240 К. Под каким давлением находится оставшийся в баллоне газ?

О т в е т. p 2 = 2∙10 5 Па.

3. Уравнение состояния газа при неизменной массе. Если при изменении состояния газа его масса не изменяется, то уравнение принимает вид:

(уравнение Клапейрона).

Решить задачу:

Некоторая масса газа при его давлении 3∙10 5 Па и температуре 300 К занимает объем 20 м 3 . Определить объем газа при нормальных условиях. О т в е т. V 0 = 54,6 м 3 .

4. Понятие изопроцессов в газах . Переход данной массы газа из одного состояния в другое при одном постоянном параметре называется изопроцессом. Таких изопроцессов три: изометрический (Т = const ), изобарный (p = const ) и изохорный (V = const ).

5. Изометрический процесс. Демонстрация зависимости между объемом и давлением массы газа при постоянной температуре. Из уравнения Клайперона имеет p 1 V 1 = p 2 V 2 , или в общем виде pV = const . Формулируем закон Бойля-Мариотта: при постоянной массе газа и неизменной температуре произведение объема газа на его давление есть величина постоянная.

Строим изотермы в осях V, p для одной и той же массы газа при разных температурах. При повышении температуры давление газа увеличивается, а потому изотермы, соответствующая боле высокой температуре Т 2 , расположена выше изотермы, соответствующей более низкой температуре Т 1 (рис. 1).

рис. 1

Изотерма газа выражает обратно пропорциональную зависимость между объемом и давлением газа.

Решить задачи:

1) В сосуде вместимостью 0,5 м 3 находится газ под давлением 4∙10 5 Па. Какой объем будет занимать этот газ при давлении 2,5∙10 5 Па? О т в е т. V 2 = 0,8 м 3 .

2) Построить изотермы в координатных осях Т, p и Т,V.

Зависимость плотности газа от давления при изотермическом процессе. Преобразует уравнение Клайперона-Менделеева к виду p = mRT/(VМ) = pRT/М. При изотермическом процессе плотность газа изменяется прямо пропорционально его давлению: p 1 /p 2 = p 1 /p 2 .

6. Изобарный процесс. Демонстрация зависимости объема газа от температуры при постоянном давлении. Из уравнения Клапейрона имеем V 1 V 2 = Т 1 /Т 2 . Формулируем закон Гей-Люссака: при постоянной массе газа при неизменном V отношение объемов газа прямо пропорциональна их термодинамическим температурам.

Различным давлением соответствует разные изобары. С увеличением p объем газа при постоянной температуре уменьшается, поэтому изобара, соответствующая более высокому p 2 , лежит ниже изобары, соответствующей более низкому p 1 (Рис. 2)

Рис 2

Решить задачи:

1) Газ при температуре 27 о С занимает объем 600 см 3 . Какой V займет этот газ при температуре 377 о С и постоянным давлением. О т в е т. 1300 см 3 .

2) Построить изобары в координатных осях Т, V; V, p и Т, p.

7. Изохорный процесс. Продемонстрировать зависимость давления газа от температуре при постоянном объеме. Из уравнения Клапейрона имеем p 1 /p 2 = Т 1 /Т 2 . Формулируем закон Шарля: при постоянной массе газа и неизменном V отношение давления газа прямо пропорциональна отношению их термодинамических температур. Строим изохору в осях Т, p по двум характерным точкам (0,0) и (Т 0 , p 0). Разным объемам соответствуют различные изохоры. С увеличением V газа при постоянной температуре его давление уменьшается, поэтому изохора, соответствующая большому V 2 , лежит ниже изохоры, соответствующей меньшему V 1 (Рис. 3)

Рис. 3

На закрепление решить задачи задачи:

1) Газ находится в баллоне при температуре 250 К и давлении 8∙10 5 Па. Определить давление газа в баллоне при температуре 350 К. О т в е т. 11,2∙10 5 Па.

2) Построить изохоры в координатных осях Т, p; Т, V и V, p.

Домашнее задание: Материал газовые законы

Изопроцессы - термодинамические процессы, во время которых количество вещества и ещё одна из физических величин - параметров состояния: давление, объёмили температура - остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму - изохорный, температуре - изотермический,энтропии - изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

Изобарный процесс

Изобарный процесс (др.-греч. ισος, isos - «одинаковый» + βαρος, baros - «вес») - процесс изменения состояния термодинамической системы при постоянном давлении ()

Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака: При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

Изохорный процесс

Основная статья: Изохорный процесс

Изохорный процесс (от греч. хора - занимаемое место) - процесс изменения состояния термодинамической системы при постоянном объёме (). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

Линия, изображающая изохорный процесс на диаграмме, называется изохорой.

Ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* ν*R*T/2=3*V*ΔP, где R - универсальная газовая постоянная, ν количество молей в газе, T температура в Кельвинах, V объём газа, ΔP приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание.

Изотермический процесс

Изотермический процесс (от греч. «термос» - тёплый, горячий) - процесс изменения состояния термодинамической системы при постоянной температуре ()(). Изотермический процесс описывается законом Бойля - Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

Графики изопроцессов в различных системах координат

Адиабатический процесс

Адиабатический процесс - это такое изменение состояний газа, при котором он не отдает и не поглощает извне теплоты. Следовательно, адиабатический процесс характеризуется отсутствием теплообмена газа с окружающей средой. Адиабатическими можно считать быстро протекающие процессы. Так как передачи теплоты при адиабатическом процессе не происходит, то и уравнение I начала термодинамики принимает вид

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов.

Термодинамический процесс (тепловой процесс) – изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Виды тепловых процессов:

Адиабатный процесс - без теплообмена с окр. средой;

Изохорный процесс - происходящий при постоянном объёме;

Изобарный процесс - происходящий при постоянном давлении;

Изотермический процесс - происходящий при постоянной температуре;

Изоэнтропийный процесс - происходящий при постоянной энтропии;

Изоэнтальпийный процесс - происходящий при постоянной энтальпии;

Политропный процесс - происходящий при постоянной теплоёмкости.

Уравнение Менделеева-Клайперона (уравнение состояния идеального газа):

PV = nRT, где n – число молей газа, P – давление газа, V – объем газа, T – температура газа, R – универсальная газовая постоянная

Изопроцессы идеального газа. Их изображение в P - V диаграммах.

1) Изобарный процесс p = const, V/T = const

2) Изохорный процесс V = const, p/T = const

3) Изотермический процесс T = const, pV = const

Термодинамические процессы. Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Их изображение на Р- V диаграммах.

Термодинамические процессы. Совокупность изменяющихся состояний рабочего тела называется термодинамическим процессом.

Идеальный газ - изучаемый в термодинамике воображаемый газ, у которого отсутствуют силы межмолекулярного притяжения н отталкивания, а сами молекулы представляют собой материальные точки, не имеющие объема. Многие реальные газы по своим физическим свойствам весьма близки к идеальному газу.

Основными процессами в термодинамике являются:

    изохорный , протекающий при постоянном объеме;

    изобарный , протекающий при постоянном давлении;

    изотермический , происходящий при постоянной температуре;

    адиабатный , при котором теплообмен с окружающей средой отсутствует;

Изохорный процесс

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv =RT) следует:

p/T =R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 =T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q =c v (T 2 - T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu =q , а значит изменение внутренней энергии можно определить по формуле:

Δu =c v (T 2 - T 1 ).

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v / T =R / p =const

v 2 /v 1 =T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l =p (v 2 – v 1 ).

Т. к. pv 1 =RT 1 иpv 2 =RT 2 , то

l =R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q =c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 / p 1 =v 1 / v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l =RT ln (v 2 – v 1 ) =RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q =l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs =R ln(p 1 /p 2 ) =R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du +p dv = 0

Δu +l = 0,

следовательно

Δu = -l.

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq =c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v =k

и уравнение кривой адиабатного процесса (адиабаты) в p, v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит названиепоказателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = - Δu = c v (T 1 – T 2 );

i 1 – i 2 = c p (T 1 – T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 – i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . ВT, s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называетсяреальным адиабатным процессом .

Уравнение Менделеева-Клапейрона

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = n RT

где n – число молей газа;

P – давление газа (например, в атм ;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O 2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1атм .

Билет 16

Вывод основного уравнения молекулярно-кинетической теории. Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Вывод основного уравнения МКТ.

Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Билет 17.

Первое начало термодинамики. Работа газа при изменении объема. Вычислить работу изотермического расширения газа.

Количество теплоты , полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. В циклическом процессе внутренняя энергия не изменяется.

Работа при изотермическом расширении газа вычисляется как площадь фигуры под графиком процесса.


Билет 18.

Теплоемкость идеального газа.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT).

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

C p = C V + R.

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

Билет 19.

Цикл Карно. Тепловая и холодильная машины. КПД цикла Карно.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно

Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тх и рабочего тела .

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура ) и S (энтропия ).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру Тн, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно , состоящий из следующих стадии: адиабатического сжатия за счёт совершения работы (на рис. 1 - процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 - процесс Б→А); адиабатического расширения (на рис. 1 - процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 - процесс Г→В).

Билет 20.

Второе начало термодинамики. Энтропия. Третье начало термодинамики.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах .

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода , показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом , не доказываемым в рамках классической термодинамики . Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса ).

Постулат Томсона (Кельвина) : «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона ).

Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии ).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю . Является одним из постулатов термодинамики , принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение). Третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики).

Термодинамическая энтропия S , часто просто именуемая энтропия , - физическая величина , используемая для описания термодинамической системы , одна из основных термодинамических величин . Энтропия является функцией состояния и широко используется в термодинамике , в том числе химической .

Изобарный процесс

Графики изопроцессов в различных системах координат

Изобарный процесс (др.-греч. ισος, isos - «одинаковый» + βαρος, baros - «вес») - процесс изменения состояния термодинамической системы при постоянном давлении ()

Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака : При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

Изохорный процесс

Изохорный процесс (от греч. хора - занимаемое место) - процесс изменения состояния термодинамической системы при постоянном объёме (). Для идеальных газов изохорический процесс описывается законом Шарля : для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

Линия, изображающая изохорный процесс на диаграмме, называется изохорой.

Ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* ν*R*T/2=3*V*ΔP, где R - универсальная газовая постоянная, ν количество молей в газе, T температура в Кельвинах, V объём газа, ΔP приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание.

Изотермический процесс

Изотермический процесс (от греч. «термос» - тёплый, горячий) - процесс изменения состояния термодинамической системы при постоянной температуре ()(). Изотермический процесс описывается законом Бойля - Мариотта :

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

Изоэнтропийный процесс

Изоэнтропийный процесс - процесс изменения состояния термодинамической системы при постоянной энтропии (). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

где - показатель адиабаты , определяемый типом газа.


Wikimedia Foundation . 2010 .

Смотреть что такое "Изопроцессы" в других словарях:

    Изопроцессы термодинамические процессы, во время которых масса и ещё одна из физических величин параметров состояния: давление, объём или температура остаётся неизменной. Так, неизменному давлению соответствует изобарный процесс, объёму изохорный … Википедия

    Молекулярно кинетическая теория (сокращённо МКТ) теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений: все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов; частицы… … Википедия

    - (сокращённо МКТ) теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений: все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов; частицы находятся в непрерывном… … Википедия

Книги

  • Статистическое прогнозирование деформационно-прочностных характеристик конструкционных материалов , Г. Плювинаж , В. Т. Сапунов , В настоящей книге представлен новый метод, предлагающий общую методологию прогнозирования характеристик кинетических процессов, единую для металлических и полимерных материалов. Метод… Категория: Учебники для ВУЗов Издатель: