Ионный двигатель для дальнего космоса. Самый мощный ионный двигатель прошёл проверку

Космические двигатели будущего

Создание ионного двигателя

Мы продоожаем рассказывать про виды двигателей .

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в , а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон , который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50-100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200 может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Во втором случае, в условиях космоса и его низких температур более интересно выглядит проект корабля с термоядерным реактором на борту, но пока НАСА разрабатывает только ядерный реактор.

Эти исследования проходят в рамках проекта Prometheus. В планах НАСА запустить в солнечную систему ядерный зонд, оснащенный мощными ионными двигателями, питающимися от бортового ядерного реактора.

Напоследок видео испытаний ионного двигателя VX-200.

Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.

Ионный двигатель: принцип действия

Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить - это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора.

Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.

Немного истории и перспективы

В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса.

К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.

Не секрет, что все реактивные двигатели работают за счёт закона сохранения импульса. Именно из него вытекает, что реактивная тяга - это произведение массового расхода на скорость выхода рабочего тела из сопла .

Эту скорость принято называть удельным импульсом реактивного двигателя. Давайте для примера найдём реактивную тягу при стрельбе из автомата Калашникова, которая является основной составляющей отдачи. Пусть масса пули будет 0,016 кг , начальная скорость пули 700 м/с , а скорострельность 10 выстр./с . Тогда отдача F=700∙0,016∙10=112 Н (или 11 кгс) . Большая отдача, но тут приведена техническая скорострельность 600 выстр./мин. В реальности стрельба ведётся очередями или одиночными и составляет ≈50 выстр./мин.

Выстрел из АК



Вернёмся к реальным реактивным двигателям, в которых вместо пуль обычно используются потоки выходящего с гиперзвуковой скоростью газа. Химические реактивные двигатели являются самыми распространёнными, но не единственными.

В этой статье, с большим предисловием, я хочу рассказать об ионных реактивных двигателях (далее ИРД). ИРД используют в качестве рабочего тела заряженные частицы - ионы. Ионы имеют массу, и если их разогнать электрическим полем, то можно создать реактивную тягу. Это всё в теории, а теперь подробнее. ИРД имеет некоторый запас газа, который ионизируют (т.е. нейтрально-заряженные атомы газа разбивают на отрицательные электроны и положительные ионы) с помощью газового разряда. Далее ионы разгоняются электрическим полем с помощью специальной системы сеток, и эта же система сеток блокирует движение электронов. После того, как положительные ионы вылетели из сопла, их нейтрализуют отрицательными электронами (в результате этого происходит рекомбинация и газ начинает светиться), чтобы ионы не притягивались обратно к двигателю, и тем самым не снижали его тяги.

Почему ксенон?

Обычно в ИРД в качестве рабочего тела используется газ ксенон, так как он имеет наименьшую энергию ионизации среди инертных газов.


Удельный импульс ионных реактивных двигателей достигает 50 км/с, что в 150 раз превышает скорость звука! Увы, но тяга таких двигателей составляет около 0,2 Н. Почему же так? Ведь удельный импульс очень большой. Дело в том, что масса ионов очень маленькая и массовый расход получается небольшим. Для чего тогда такие двигатели нужны, если они ничего не смогут сдвинуть с места? На Земле может быть не смогут, а вот в космосе, где нет сил сопротивления, они достаточно эффективные. Существует такое понятие как полный импульс - произведение тяги на время или произведение удельного импульса на массу топлива , который у ИРД является достаточно большим.

Решим следующую задачу. Пусть жидкостный ракетный двигатель имеет удельный импульс 5 км/с, а у нашего ИРД он будет 50 км/с. И давайте масса рабочего тела (в ЖРД она равна массе топлива) у обоих двигателей будет 50 кг. Примем массу космического аппарата равной 100 кг.
Найдём по формуле Циолковского конечную скорость аппарата (т.е. когда в нём закончится рабочая масса).

И что получается, если ионный и химический реактивные двигатели будут иметь одинаковую массу топлива, то ИРД сможет разогнать космический аппарат до больших скоростей, нежели химический РД. Правда на ИРД космический аппарат будет разгонятся дольше до конечной скорости, чем на ЖРД. Но в путешествиях к далёким планетам, высокая конечная (разгонная) скорость будет компенсировать этот недостаток.

Схема полёта к Марсу на ИРД



ИРД используются и в наше время. Например, аппарат Deep Space 1 сблизился с астероидом Брайль и кометой Борелли, передал на Землю значительный объём ценных научных данных и изображений.


Deep Space 1

Также космическая антенна LISA, которая сейчас находится на стадии проектирования, будет использовать ИРД для корректировки орбиты.


Laser Interferometer Space Antenna

И напоследок, давайте определим тягу ИРД, зная массу иона М=6,5∙10^-26 кг , ускоряющие напряжение U=50 кВ , ток нейтрализации I=0,5 А , элементарный заряд е=1,6∙10^-16 Кл .

Напряжение - это работа по переносу заряда, т.е. на выходе из сопла ион будет иметь кинетическую энергию равную произведению напряжения на заряд иона. Из кинетической энергии выражаем скорость (удельный импульс). Найдём массовый расход из определения тока, электрический ток - это проходящий заряд во времени. Получается, что массовый расход - это произведение массы иона и тока, делённое на заряд иона. Перемножая удельный импульс и массовый расход, получаем тягу равную 0,1 Н.

Подводя итог, хочу сказать, что существуют плазменные реактивные двигатели, у которых схожее устройство, но которые имеют намного больший массовый расход рабочего тела. Кто знает, может быть уже завтра на таких двигателях человечество будет летать на Марс и Луну.

Огромный электроракетный двигатель с рекордными характеристиками прошёл наземный тест под нагрузкой, превышающей номинал. Новичок совмещает приличную тягу с экономичностью. А это позволяет надеяться на новый виток в развитии космической отрасли.

Ионный двигатель хорошо известен нам из научно-фантастических романов. Принцип его работы заключается в ионизации газа и его разгоне электростатическим полем. Ионы дают гораздо меньшую тягу, чем химическое топливо, так что такой двигатель не сможет придать ракете даже первую космическую скорость. Но если запустить его в космосе, то он может работать буквально годами напролёт, разгоняя корабль до невиданных скоростей.

В некоторых космических миссиях уже применялись такие двигатели, в том числе в японском корабле «Хаябуса» (2005 год, полёт к астероиду Итокава), а также в американском корабле «Доун», который стартовал в сентябре 2007 года к астероидам Веста и Церера.

Но новая модель двигателя под названием VASIMR (Variable Specific Impulse Magnetoplasma Rocket) будет в сотни раз мощнее прежних ионных двигателей за счёт использования в процессе разгона ионов аргона не стандартных металлических решёток, а радиочастотного генератора, который не вступает с газом в физический контакт, как решётки.

Ad Astra Rocket Company провела испытания самого мощного на сегодняшний день плазменного ракетного двигателя. VASIMR VX-200 (о котором мы не так давнорассказывали) работал на 201 кВт в вакуумной камере, впервые преодолев отметку в 200 кВт. Тест также подтвердил, что маломасштабный прототип VASIMR (Variable Specific Impulse Magnetoplasma Rocket – электромагнитный ускоритель с изменяемым удельным импульсом) способен функционировать на полной мощности. “Это самая мощная плазменная ракета в мире сегодня”, – говорит бывший астронавт и главный исполнительный директор Ad Astra Франклин Ченг-Диаз (Franklin Chang-Diaz).

Компания заключила соглашение с NASA на проведение проверки работоспособности двигателя на Международной космической станции (МКС) в 2013 году. Он будет производить периодические “подталкивания” станции, которая постоянно снижается из-за взаимодействия с атмосферой. В настоящее время такие операции выполняются двигателями малой тяги кораблей, потребляющими около 7,5 тонн ракетного топлива в год. Ченг-Диаз утверждает, что снизив это количество до 0,3 т, VASIMR сэкономит NASA миллионы ежегодно.

Но у Ad Astra есть и более амбициозные планы. Например, миссии на Марс на высокой скорости. 10-МВт или 20-МВт модификация VASIMR сможет доставить людей на красную планету за 39 дней, тогда как у обычных ракет на это уйдёт полгода, если не больше. Чем короче путешествие, тем меньше астронавты будут подвергаться действию космической радиации, являющейся существенным препятствием.

Инновационный двигатель также можно приспособить для большего груза в роботизированных миссиях, хотя скорость полёта снизится. Ченг-Диаз трудился над разработкой концепции VASIMR с 1979 года – задолго до основания бизнеса в 2005 году. Технология подразумевает использование радиоволн для нагревания газов (водорода, аргона, неона), чтобы сформировать высокотемпературную плазму. Магнитные поля выталкивают её из двигателя, благодаря чему создаётся реактивная тяга. Как следствие высокой скорости, которая достигается беспрерывным процессом её наращивания, требуется намного меньше топлива, чем для обычных двигателей. Вдобавок, в конструкции VASIMR нет физического контакта электродов с плазмой, а значит продлевается срок эксплуатации.

Как работает VASIMR в тестовой камере, можно увидеть в этом ролике. Правда, он относится к давнему испытанию, во время которого аппарат потреблял только 179 киловатт. Из них 30 кВт использовались в первой части двигателя для создания плазмы, а 149 - на разогрев и разгон её во второй камере.

Стоит вспомнить американский межпланетный аппарат Dawn, который стартовал осенью 2007-го (к своей первой цели, Весте, он прибудет в 2011 году). Для разгона к поясу астероидов Dawn использует три ионных двигателя, каждый из которых развивает максимальную тягу в 90 миллиньютонов.

“Это идентично весу одного листка из блокнота”, - образно поясняет NASA. В чём, спрашивается, смысл? Дело в том, что “ионники” примерно в 10 раз эффективнее химических ракетных двигателей. В частности, удельный импульс устройств, стоящих на Dawn, составляет 3100 секунд.

Потому 425 килограммов рабочего тела (ксенона) им хватит на 2100 дней работы. Пусть ускорение Dawn невозможно заметить глазу, но общее приращение скорости за всё время миссии составит порядка 10 километров в секунду.

И сам аппарат получился сравнительно лёгким (тонна с четвертью). Потому для его старта с Земли понадобилась ракета меньшего класса (Delta II), а значит - более дешёвая, в сравнении той, что потребовалась бы для подъёма на орбиту гипотетического исследователя астероидов, построенного на основе химических движков.

Удельный импульс установки VX-200 составляет порядка 5000 секунд. Вообще же он может меняться, что и отражено в названии устройства. Больший КПД можно получить при малой тяге, меньший - при максимальной.

Так можно варьировать режим работы маршевого движка в зависимости от целей миссии космического аппарата. Где-то можно позволить себе потратить несколько больше рабочего тела, но сократить время полёта, где-то, напротив, выполнить задание за больший срок, но при минимальном расходе “горючего”, а значит, - минимальном весе аппарата.

Тут надо отметить, что VASIMR претендует на роль некоего промежуточного варианта создания тяги в условиях космоса. Промежуточного между химическими ускорителями (мощными, но прожорливыми) и чрезвычайно миниатюрными электроракетными движками, экономичность которых может быть гораздо выше, чем даже у VX-200, но тяга будет составлять лишь доли грамма.

VASIMR обладает ещё одним преимуществом перед соперниками из стана электроракетных двигателей в целом: в нём плазма ни в одной точке не соприкасается с деталями аппарата, а контактирует только с полями.

Это означает, что устройство от Ad Astra сможет работать по многу месяцев и даже лет без деградации конструкции - то что надо для разгона космических аппаратов на пути в глубины Солнечной системы или коррекции орбиты спутников. У классических ионных ракетных двигателей больной вопрос – эрозия решёток-электродов. У VASIMR же таковых попросту нет.

Ad Astra Rocket строит богатые планы применения VASIMR в ряде проектов. Так, по соглашению с американским космическим агентством в 2013 году лётный вариант VX-200, названный VF-200-1, должен попасть на испытания на МКС. Разрабатываемый ныне аппарат будет базироваться на общем дизайне VX-200, но состоять из двух фактически параллельных движков по 100 киловатт каждый.

(Интересно, что Ad Astra Rocket ведёт переговоры о доставке VF-200-1 на станцию при помощи частного носителя от SpaceX либо Orbital Sciences).

VF-200-1 попробует поднимать орбиту станции, регулярно “проседающую” из-за слабого торможения в остатках атмосферы, имеющихся даже на 400-километровой высоте. VF-200-1 будет включаться на короткое время (несколько минут) эпизодически. А поскольку мощность, забираемая им из сети, очень велика, двигатель должен потреблять энергию, накопленную в специальных аккумуляторах, которые, в свою очередь, во время пауз в работе плазменного ускорителя будут понемногу подзаряжаться от солнечных батарей МКС.

Если тест пройдёт успешно, на такой способ подъёма орбиты, возможно, и переведут станцию. А это обещает солидную экономию. Ведь нынешний вариант подъёма орбиты (при помощи химических движков транспортных кораблей снабжения) означает расход 7,5 тонны горючего в год, в то время как VASIMR потребует на ту же цель 300 килограммов аргона ежегодно. Перспективы же технологии ещё заманчивее.

На основе одного или нескольких VF-200-1, полагает компания, можно построить беспилотный грузовик, который будет переправлять большие грузы с низкой околоземной орбиты на окололунную. Питание эти движки получали бы от солнечных батарей.

Для такого аппарата, скорее всего, потребовалась бы бортовая атомная электростанция - солнечные панели нужной мощности вышли бы просто чудовищно большими.

О том, что электроракетные движки для дальних миссий “просят” ядерную подпитку, специалисты говорят давно. Никаких принципиальных и неразрешимых трудностей в постройке подобного генератора сейчас нет.

Ещё не все вопросы относительно тонкостей работы самого VASIMR сняты. Учёным предстоит повысить полный КПД системы и найти лучший способ избавления от лишнего тепла, рассеиваемого таким движком. Но в целом технология вполне уже подходит к этапу, когда исключительно наземные экспериментальные установки должны породить модификации, предназначенные для отправки на орбиту. Чан-Диаз и его коллеги полагают, что коммерческие версии двигателей типа VASIMR могут появиться на рынке в 2014 году.

Ионный двигатель

Ионные двигатели могут использоваться для широкого спектра задач — от коррекции положения спутников на орбите Земли, до разгона гигантских космических кораблей, направляющихся за пределы нашей Солнечной системы в глубины Млечного Пути. Но что же такое ионный двигатель, и как именно он используется в космосе? Обычные ракетные двигатели сжигают газ, который выпускается из сопла под высоким давлением, что вызывает мощную реактивную тягу, толкающую корабль вперед. У ионного двигателя инертный газ (ксенон, аргон) не сжигают, а ионизируют, а испускаемые им ионы разгоняют до высоких скоростей в сильном электрическом поле. Таким образом, ионы выстреливают из двигателя со скоростью до 150000 км в час.

Применение ионных двигателей

Но, к сожалению, тяга ионных двигателей чрезвычайно мала и сопоставима с давлением, которое оказывает один лист бумаги формата А4 на ладонь человека. Но в невесомой космической среде, где нет никакого трения, ионные двигатели могут быть чрезвычайно эффективными, поскольку эффект от их тяги накапливается со временем. Первый в мире ионный двигатель успешно используется на автоматической межпланетной станции DAWN , которую НАСА запустило в космос 27 сентября 2007 года для исследования астероида Веста и карликовой планеты Церера. В данный момент космический аппарат DAWN находится в поясе астероидов между и Юпитером.

У него ушло четыре дня на то, чтобы с помощью ионного двигателя разогнаться с нуля до 100 километров в час. Да, это не особо впечатляет, но зато ионные двигатели очень экономные и могут работать десятилетиями. При этом скорость космического корабля, разгоняемого ионным двигателем, постоянно увеличивается и может составлять тысячи километров в секунду через определенное время.

Зачем использовать ионные двигатели?

Этот тип движения дают космическим аппаратам маневренность на орбите Земли. С их помощью можно легко менять расположение спутников, например, для коррекции высоты их орбиты или уклонения от крупного . Кроме этого ионные двигатели значительно дешевле и экономнее ракетных двигателей. Они значительно продлевают срок эксплуатации спутников и сокращают пусковые и эксплуатационных затраты. В данный момент времени, НАСА работает над разработкой сразу двух ионных двигателей нового поколения: Эволюционный ксеноновый Двигатель Next и кольцевой ионный двигатель . Эти новые двигатели снизят стоимость космических миссий и продлят время их работы, а также будут обладать более высокой мощностью.