Прорыв в аккумуляторах. Новые виды аккумуляторов приходят на смену литий-ионным батареям

В начале 90-х годов произошел серьезный шаг в технологии разработки аккумуляторов — изобретение литий-ионных накопителей энергии. Это позволило нам увидеть смартфоны и даже электромобили в том виде, в каком они существуют сейчас, но с тех пор не было изобретено ничего серьезного в этой области, в электронике до сих пор используется именно этот тип.

В свое время, Li-ion батареи с увеличенной емкостью и отсутствием «эффекта памяти» действительно были прорывом в технологии, но сейчас они уже не справляются с возросшей нагрузкой. Появляется все больше смартфонов с новыми, полезными функциями, которые в итоге увеличивают нагрузку на аккумулятор. При этом, электромобили с такими аккумуляторами все еще слишком дороги и малоэффективны.

Для того, чтобы смартфоны работали продолжительное время и оставались небольшого размера, нужны новые аккумуляторы.

Аккумуляторы с жидкостными электродами

Одна из интересных попыток решить проблемы традиционных аккумуляторов — разработка «проточных» аккумуляторов с жидким электролитом. Принцип работы таких аккумуляторов основан на взаимодействии двух заряженных жидкостей, прогоняемых насосами через ячейку, где вырабатывается электрический ток. Жидкости в этой ячейке не смешиваются, а разделяются мембраной, через которую проходят заряженные частицы, все как в обычном аккумуляторе.

Аккумулятор можно как заряжать обычным способом, так и заливать новый, заряженный электролит, в этом случае процедура займет всего пару минут, все равно что залить бензин в бензобак. Этот способ прежде всего подходит для автомобиля, но пригодится и для электроники.

Натриевые аккумуляторы

Основные недостатки литий-ионных аккумуляторов — дороговизна материалов, относительно небольшое количество циклов разрядки-зарядки и пожароопасность. Поэтому уже долгое время ученые пытаются усовершенствовать эту технологию.

В Германии сейчас ведутся работы над натриевыми аккумуляторами , которые должны стать более долговечными, дешевыми и емкими. Электроды нового аккумулятора будут собраны из разных слоев, что позволяет быстро заряжать аккумулятор. В настоящее время идет поиск более надежной конструкции электрода, после чего можно будет сделать вывод, пойдет эта технология в производство, либо какая-то другая разработка окажется лучше.

Литий-серные аккумуляторы

Еще одна новая разработка — литий-серные аккумуляторы. В этих батареях планируется использовать катод из серы, что будет означать существенное удешевление батареи. Эти аккумуляторы уже находятся в высокой степени готовности и скоро могут пойти в серийное производство.

Теоретически, литий-серные аккумуляторы позволяют достичь более высокой энергоемкости, чем литий-ионные, которые уже подошли к своим предельным возможностям. Очень важно, что литий-серные аккумуляторы можно полностью разряжать и неограниченное время хранить в полностью разряженном виде без эффекта памяти. Сера вторичный продукт переработки нефти, в новых аккумуляторах не будет тяжелых металлов (никель и кобальт), новый состав батарей будет более экологичным и аккумуляторы будет проще утилизировать.

Совсем скоро будет известно, какая технология окажется наиболее перспективной и вытеснит устаревающие литий-ионные аккумуляторы.

А пока предлагаем Вам познакомиться с популярной профессией .

«Квантовая» батарея

С 26 по 28 февраля в Токио проходит выставка накопителей, на которой среди прочих представлена компания Micronics Japan Co. Ltd . О её предыдущих разработках мало что известно, но совсем недавно она заявила о том, что разработала и подготовила к производству слоистую батарею нового типа. Одиночная ячейка, которую демонстрирует компания, представляет собой плёнку из металл-оксид-полупроводниковой структуры n-типа, в которой используются частицы диоксида титана, диоксида олова и оксида цинка, покрытые изолирующей плёнкой. В опытном образце используется лист нержавеющей стали толщиной 10 мкм, но вскоре его заменят на алюминиевый.

Квантовой разработчики назвали свою батарею чтобы подчеркнуть её физическую, а не химическую природу. Несмотря на то, что для хранения энергии вместо ионов в ней используются электроны, по принципу действия эта батарея отличается от конденсаторов. Утверждается , что система основана на хранении электронов «в запрещённой зоне» полупроводника.

При производстве структур «металл - оксид - полупроводник» зарядовый слой накопителя облучают ультрафиолетом. После изготовления, при зарядке, электроны занимают свободные энергические уровни в рабочем материале и хранятся там до тех пор, пока батарею не потребуется разрядить. В итоге получаются перезаряжаемые батареи с очень высокой плотностью хранения энергии.
Какими показателями обладают тестовые образцы неизвестно, но разработчик заявляет, что серийные образцы, которые появятся в скором будущем, будут иметь ёмкость до 500 Вт ч/л и при этом смогут выдавать до 8 000 Вт пиковой мощности на литр объёма.
Такие накопители объединяют лучшие черты аккумуляторов и суперконденсаторов. Даже при малой ёмкости они смогут выдавать большую пиковую мощность. Напряжение, снимаемое с таких накопителей, не уменьшается по мере их разрядки, а до конца остаётся стабильным.
Заявленный диапазон рабочих температур от -25 до +85 °C. Батарея может быть подвержена 100 тыс. циклов зарядки-разрядки до падения ёмкости ниже 90% от первоначальной. Способность быстро забирать и отдавать энергию сильно уменьшит время зарядки. Кроме того, такие батареи пожаробезопасны. Редкие или дорогие материалы в её производстве не используются. В общем, плюсов столько, что даже не верится.

Самозаряжающаяся батарея

Группа исследователей во главе с Чжунлинь Ваном (Zhong Lin Wang) из Технологического института Джорджии (США) создала самозаряжающуюся батарею, не требующую для возобновления заряда подключения к розетке.
Устройство заряжается от механического воздействия, а точнее - от нажатия. Его планируется применять в сматрфонах и других устройствах сенсорных устройствах.
Разработчики разместили своё устройство под клавишами калькулятора и смогли обеспечить его работоспособность в течении суток за счёт энергии от нажатия кнопок.

Батарея представляет собой «прирог» из поливинилиденфторидной и цирконат-титанатосвинцовой плёнок толщиной в несколько сот микрометров. При нажатии на неё ионы лития мигрируют от катода к аноду в силу пьезоэлектрического эффекта. Чтобы повысить эффективность прототипа, исследователи добавили в его пьезоэлектрический материал наночастицы, усиливающие соответствующий эффект, и добились серьёзного увеличения ёмкости и скорости подзарядки устройства.
Нужно понимать, что батарея непрозрачная, поэтому может помещаться только под кнопками, либо под экраном.
Батарея не имеет таких выдающихся характеристик, как ранее описанное устройство (сейчас ёмкость батареи размером со стандартную «таблетку» для матплат выросла с начальных 0,004 до 0,010 мА ч), но разработчика обещают ещё поработать над её эффективностью. До промышленных образцов ещё далеко, хотя гибкие экраны - основные устройства, в которых разработчика планируют разместить свою батарею - пока слабо распространены. Ещё есть время доработать своё изобретение и внедрить в производство.

Батарея на основе сахара

Складывается впечатление, что разработкой батарей занимаются только азиаты. Прототип очередной необычной батареи создали в американском Политехническом университете Вирджинии.

Эта батарея по сути работает на сахаре, точнее на мальтодекстрине - полисахариде, полученном в результате гидролиза крахмала. Катализатором в такой батарее является энзим. Он намного дешевле платины, которая сейчас применяется в обычных батареях. Такая батарея относится к типу энзимных топливных элементов. Электричество здесь производится путём реакции кислорода, воздуха и воды. В отличии от водородных топливных элементов, энзимы негорючи и невзрывоопасны. А после того, как батарея исчерпает свой ресурс, по словам разработчиков , её можно будет снова заправить сахаром.
О технических характеристиках данного типа аккумуляторов пока известно мало. Утверждается лишь, что плотность энергии в них в несколько раз выше, чем в обычных литий-ионных батареях. Стоимость таких батарей существенно ниже обычных, поэтому разработчики полны уверенности найти им коммерческое применение в ближайшие 3 года. Подождём обещанного.

Батарея со структурой граната

А вот учёные из американской Национальной ускорительной лаборатории SLAC при Стэнфордском университете решили увеличить объём обычных батарей , воспользовавшись структурой граната.

Разработчики максимально уменьшили размер анодов и поместили каждый из них в углеродную оболочку. Это позволяет предотвратить их разрушение. В процессе зарядки, частицы расширяются и объединяются в кластеры, которые так же помещаются в углеродную оболочку. В результате таких манипуляций, ёмкость этих аккумуляторов в 10 раз превышает ёмкость обычных литий-ионных батарей.
Из опытов следует, что после 1000 циклов заряда/разряда, батарея сохраняет 97% первоначальной ёмкости.
Но о коммерческом применении данной технологии говорить пока рано. Слишком уж дороги в производстве кремниевые наночастицы и слишком сложен сам процесс создания таких батарей.

Атомные батареи

И напоследок расскажу о разработке британских учёных . Они решили переплюнуть своих коллег создав миниатюрный ядерный реактор. Прототип атомного аккумулятора, созданный исследователями университета Сюррея на основе трития, производит достаточно энергии для работы мобильного телефона в течении 20 лет. Правда подзарядить его потом уже не получится.

В батареи, представляющей собой интегральную микросхему, происходит ядерная реакция, в результате которой вырабатывается 0,8 – 2,4 ватт энергии. Рабочая температура батареи составляет от -50 до +150. При этом ей не страшны резкие перепады температуры и давления.
Разработчики утверждают, что для человека тритий, который содержится в батареи не опасен, т.к. его содержание там очень мало. Однако, о массовом производстве таких источников питания пока рано говорить - учёным предстоит провести ещё массу исследований и испытаний.

Заключение

Конечно, далеко не все из вышеописанных технологий найдут своё применение, тем не менее, надо понимать, что в ближайшие несколько лет должен произойти прорыв в технологии производства аккумуляторных батарей, который повлечёт за собой всплеск распространения электромобилей и производства смартфонов и других электронных устройств нового типа.

С развитием технологий устройства делают более компактными, функциональными и мобильными. Заслуга такого совершенства аккумуляторные батареи , которые питают устройство. За все время изобретено много разных видов аккумуляторов, которые имеют свои преимущества и недостатки.

Казалось бы, перспективная десяток лет назад технология литий ионных батарей, уже не отвечает требованиям современного прогресса для мобильных устройств. Они недостаточно мощны и быстро стареют при частом использовании или долгом хранении. С тех пор выведены подвиды литиевых батарей, такие как литий-железо-фосфатные, литий-полимерные и другие.

Но наука не стоит на месте и ищет новые способы еще более лучшего сохранения электроэнергии. Так, например, изобретают другие типы батарей.

Литий-серные батареи (Li-S)

Литий серная технология позволяет получать батареи и энергоемкостью которая в два раза превышает за их родителей литий ионных. Без существенной потери в емкости такой тип батарей можно перезарядить до 1500 раз. Преимущество батареи скрывается в технологии изготовления и компоновки, где используется жидки катод с содержанием серы, при этом он отделен специальной мембраной от анода.

Литий серные батареи можно использовать в достаточно широком диапазоне температур, а себестоимость их производства достаточно низка. Для массового применения надо устранить недостаток производства, а именно утилизация серы, которая вредна для экологии.

Магниево-серные батареи (Mg/S)

До последнего времени нельзя было объединить использования серы и магния в одной ячейке, но не так давно ученые смогли это сделать. Для их работы нужно было изобрести электролит, который бы работал с обоими элементами.

Благодаря изобретению нового электролита за счет образования кристаллических частит, которые стабилизируют его. Увы, но опытный образец на данный момент не долговечен, и в серию такое батареи скорей всего не пойдут.

Фторид-ионные батареи

Для переноса зарядов между катодом и анодом в таких батареях используется анионы фтора. Этот тип аккумуляторов имеет емкость которые в десятки раз превышает за обычные литий ионные батареи, а также может похвастаться меньшей пожароопасностью. В основе электролита лежит лантане бария.

Казалось бы, перспективное направление развитие батарей, но и оно не лишено недостатков очень серьезная преграда для массового использования - это работа аккумулятора только при очень высоких температурах.

Литий-воздушные батареи (Li-O2)

Вместе с техническими достижениями человечество уже задумывается о нашей экологии и ищет все более и более чистые источники энергии. В литий воздушных аккумуляторах вместо оксидов металла в электролите применяется углерод, который вступая в реакцию с воздухом создает электрический ток.

Плотность энергии составляет до 10 кВтч/кг, что позволяет их использовать в электромобилях и мобильных устройствах. Ожидает скорое появления для конечного потребителя.

Литий-нанофосфатные батареи

Этот тип батарей является следующим поколение литий ионных батарей, среди преимуществ который является высокая скорость заряда и возможностью высокой отдачи тока. Для полного заряда, например, требуется коло 15 минут.

Новая технология использования особых нано частиц, способных обеспечивать более быстрый поток ионов позволяют увеличить количество циклов заряда – разряда в 10 раз! Само собой, они имеют слабый саморазряд и отсутствует эффект памяти. Увы, но, широкому распространению мешает большой вес аккумуляторов и необходимость в специальной зарядке.

Как вывод, можно сказать одно. Мы скоро будем наблюдать повсеместное использование электромобилей и гаджетов, которые смогут работать очень большое время без подзарядки.

Электро новости:

Автоконцерн BMW представил свой вариант электровелосипеда. Электрический велосипед BMW оснащен электромотором (250 Вт) Разгон до скорости до 25 км/ч.

Берем сотню за 2,8 секунды на электроавтомобиле? По слухам, обновление P85D позволяет сократить время разгона с 0 до 100 километров в час с 3,2 до 2,8 секунды.

Испанские инженеры разработали аккумулятор на котором можно проехать больше 1000 км! Она дешевле на 77% и заряжается всего за 8 минут

Электрокары должны решить немало проблем окружающей среды. Если их заряжать током из возобновляемых источников, то они окажутся практически безвредны для атмосферы. Конечно, если не учитывать их технологически сложного производства. И ехать на электрической тяге без привычного гудения двигателя - просто приятнее. Морокой до сих пор остаются постоянные хлопоты из-за состояния заряда аккумулятора. Ведь если он опустится до нуля и рядом не будет ни одной зарядной станции, то проблем не оберешься.

Есть шесть решающих факторов успешности электрокаров, которые запитаны от аккумуляторных батарей. Прежде всего, речь идет о емкости - то есть сколько электроэнергии может хранить аккумулятор, количество циклического использования батареи - то есть «заряд-разряд», которые аккумулятор выдерживает, прежде чем выйти из строя, и время подпитки - то есть сколько водителю придется ждать, заряжая автомобиль, чтобы ехать дальше.

Не менее важна и надежность самого аккумулятора. Скажем, сможет ли он выдержать поездку в высокогорье или путешествие жаркой летней порой. Конечно, решая, стоит ли покупать электрокар, следует учитывать и такой фактор, как количество станций подзарядки и цену аккумуляторов.

Как далеко уедешь на батареях?

Легковые электрокары, представленные на рынке сегодня, на одном заряде преодолевают дистанции от 150 до более 200 километров. В принципе, эти расстояния можно увеличить, если удвоить или утроить количество аккумуляторов. Но, во-первых, сейчас это было бы настолько дорого, что покупка электромобиля оказалась бы непосильной, а во-вторых, сами электромобили стали бы гораздо тяжелее, поэтому их надо было бы конструировать, рассчитывая на большие нагрузки. А это противоречит цели, которые преследуют компании-производители электрокаров, а именно - легкость конструкции.

К примеру, Daimler недавно представил грузовик на электроприводе, который может преодолевать на одной подзарядке до 200 километров. Однако сам аккумулятор весит не менее двух тонн. Зато двигатель значительно легче, чем у грузовика на дизеле.

Какие аккумуляторы доминируют на рынке?

Современные аккумуляторы, безразлично, идет ли речь о мобильные телефоны, ноутбуки или электрокары, это - почти исключительно варианты так называемых литий-ионных аккумуляторов. Речь идет о разновидности типов аккумуляторов, где щелочной металл литий встречается как в положительных и отрицательных электродах, так и в жидкости - так называемом электролите. Как правило, отрицательный электрод состоит из графита. В зависимости от того, какие еще материалы применяются в положительном электроде, различают, например, литий-кобальтовые (LiCoO2), литий-титановые (Li4Ti5O12) и литий-железо-фосфатные аккумуляторы (LiFePO4).

Особую роль играют литий-полимерные аккумуляторы. Здесь электролитом выступает гелеобразная пластмасса. На сегодня эти аккумуляторы - самые мощные из тех, что найдешь на рынке, они достигают емкости энергии до 260 ватт-часов на килограмм. Остальные литиево-ионные аккумуляторы способны максимум на 140 до 210 ватт-часов на килограмм.

А если сравнить типы батарей?

Литий-ионные батареи очень дорогие, прежде всего, из-за высокой рыночной стоимости лития. Однако есть немало преимуществ по сравнению с теми типами сделанных из свинца и никеля аккумуляторов, которые применялись ранее.

Кроме того, литий-ионные аккумуляторы достаточно быстро заряжаются. Это означает, что с обычным током от электросети электрокар можно подзарядить за два - три часа. А на станциях специальной быстрой подзарядки на это может уйти один час.

Старые типы аккумуляторов не имеют таких преимуществ и энергии они могут аккумулировать значительно меньше. Аккумуляторы на никелевой основе имеют емкость энергии от 40 до 60 ватт-часов на килограмм. Еще хуже свойства в свинцовых аккумуляторах - емкость энергии в них около 30 ватт-часов на килограмм. Однако они - значительно дешевле и без проблем выдерживают много лет эксплуатации.

На сколько хватает современных аккумуляторов?

Многие помнят так называемый эффект памяти аккумуляторной батареи в старых аккумуляторах. Больше всего он проявлялся в никелевых аккумуляторах. Тогда, если кто-то думал зарядить аккумулятор шуруповерта или ноутбука, хотя батарея была чуть ли не наполовину заряжена, способность накапливать электрическую энергию удивительно сильно сокращалась. Поэтому перед каждым процессом зарядки следовало полностью расходовать энергию. Для электромобилей это было бы катастрофой, ведь их надо подзарядить именно тогда, когда они находятся на подходящем расстоянии от зарядной установки, а не тогда, когда у аккумулятора кончился заряд.

Зато литий-ионные аккумуляторы не имеют такого «эффекта памяти». Производители обещают до 10 000 циклов «заряд-разряд» и 20 лет бесперебойной работы. В то же время нередко опыт потребителей свидетельствует о другом - аккумуляторы ноутбуков «умирают» уже после нескольких лет работы. Кроме того, нанести непоправимый вред аккумуляторам могут внешние факторы - например, экстремальные температуры или допущенный по недосмотру полный разряд аккумулятора или его перезаряд. Очень важной в современных аккумуляторных батареях является бесперебойная работа электроники, контролирующей процесс подпитки.

Суперакумуляторы - лишь пустой звук?

Эксперты из исследовательского центра Jülich работают над разработкой кремний-воздушных аккумуляторов. Идея воздушных аккумуляторов - не такая уж и новая. Так, ранее пробовали разработать литий-воздушные аккумуляторы, в которых положительный электрод состоял бы из нанокристаллической решетки углерода. При этом сам электрод не участвует в электрохимическом процессе, а выступает лишь как проводник, на поверхности которого восстанавливается кислород.

По такому же принципу действуют и кремниево-воздушные аккумуляторы. Впрочем, они имеют преимущество, как состоящие из очень дешевого кремния, который встречается практически в неограниченном количестве в природе в виде песка. Кроме того, кремний активно используют в полупроводниковой технологии.

В дополнение к потенциально низкой себестоимости производства, технические характеристики воздушных аккумуляторов тоже, на первый взгляд, достаточно привлекательны. Ведь они могут достичь такой емкости энергии, которая превышает сегодняшние показатели втрое, а то и в десять раз.

Однако до выхода на рынок этим разработкам еще далеко. Самой большой проблемой является неудовлетворительно короткая «продолжительность жизни» воздушных аккумуляторов. Она значительно ниже 1000 циклов «заряд-разряд». Определенную надежду подает эксперимент исследователей центра Jülich. Им удалось выяснить, что продолжительность эксплуатации таких аккумуляторов можно значительно повысить, если регулярно наполнять электролит в этих аккумуляторных батареях. Но даже и при таких технических решениях эти аккумуляторы не достигнут и доли той продолжительности эксплуатации, которую имеют сегодняшние литий-ионные аккумуляторные батареи.