Модуль относительной скорости движения тел. Лекция

ОПРЕДЕЛЕНИЕ

Процессы, при которых один из параметров состояния газа остается постоянным называют изопроцессами .

ОПРЕДЕЛЕНИЕ

Газовые законы - это законы, описывающие изопроцессы в идеальном газе.

Газовые законы были открыты экспериментально, но все они могут быть получены из уравнения Менделеева-Клапейрона.

Рассмотрим каждый из них.

Закон Бойля-Мариотта (изотермический процесс)

Изотермическим процессом называют изменение состояния газа, при котором его температура остаётся постоянной.

Для неизменной массы газа при постоянной температуре произведение давления газа на объем есть величина постоянная:

Этот же закон можно переписать в другом виде (для двух состояний идеального газа):

Этот закон следует из уравнения Менделеева - Клапейрона:

Очевидно, что при неизменной массе газа и при постоянной температуре правая часть уравнения остается постоянной величиной.

Графики зависимости параметров газа при постоянной температуре называются изотермами .

Обозначив константу буквой , запишем функциональную зависимость давления от объема при изотермическом процессе:

Видно, что давление газа обратно пропорционально его объему. Графиком обратной пропорциональности, а, следовательно, и графиком изотермы в координатах является гипербола (рис.1, а). На рис.1 б) и в) представлены изотермы в координатах и соответственно.


Рис.1. Графики изотермических процессов в различных координатах

Закон Гей-Люссака (изобарный процесс)

Изобарным процессом называют изменение состояния газа, при котором его давление остаётся постоянным.

Для неизменной массы газа при постоянном давлении отношение объема газа к температуре есть величина постоянная:

Этот закон также следует из уравнения Менделеева - Клапейрона:

изобарами .

Рассмотрим два изобарных процесса с давлениями и title="Rendered by QuickLaTeX.com" height="18" width="95" style="vertical-align: -4px;">. В координатах и изобары будут иметь вид прямых линий, перпендикулярных оси (рис.2 а,б).

Определим вид графика в координатах .Обозначив константу буквой , запишем функциональную зависимость объема от температуры при изобарном процессе:

Видно, что при постоянном давлении объем газа прямо пропорционален его температуре. Графиком прямой пропорциональности, а, следовательно, и графиком изобары в координатах является прямая, проходящая через начало координат (рис.2, в). В реальности при достаточно низких температурах все газы превращаются в жидкости, к которым газовые законы уже неприменимы. Поэтому вблизи начала координат изобары на рис.2, в) показаны пунктиром.


Рис.2. Графики изобарных процессов в различных координатах

Закон Шарля (изохорный процесс)

Изохорным процессом называют изменение состояния газа, при котором его объем остаётся постоянным.

Для неизменной массы газа при постоянном объеме отношение давления газа к его температуре есть величина постоянная:

Для двух состояний газа этот закон запишется в виде:

Этот закон также можно получить из уравнения Менделеева - Клапейрона:

Графики зависимости параметров газа при постоянном давлении называются изохорами .

Рассмотрим два изохорных процесса с объемами и title="Rendered by QuickLaTeX.com" height="18" width="98" style="vertical-align: -4px;">. В координатах и графиками изохор будут прямые, перпендикулярные оси (рис.3 а, б).

Для определения вида графика изохорного процесса в координатах обозначим константу в законе Шарля буквой , получим:

Таким образом, функциональная зависимость давления от температуры при постоянном объеме является прямой пропорциональностью, графиком такой зависимости является прямая, проходящая через начало координат (рис.3, в).


Рис.3. Графики изохорных процессов в различных координатах

Примеры решения задач

ПРИМЕР 1

Задание До какой температуры нужно изобарически охладить некоторую массу газа с начальной температурой , чтобы объем газа уменьшился при этом на одну четверть?
Решение Изобарный процесс описывается законом Гей-Люссака:

По условию задачи объем газа вследствие изобарного охлаждения уменьшается на одну четверть, следовательно:

откуда конечная температура газа:

Переведем единицы в систему СИ: начальная температура газа .

Вычислим:

Ответ Газ нужно охладить до температуры .

ПРИМЕР 2

Задание В закрытом сосуде находится газ под давлением 200 кПа. Каким станет давление газа, если температуру повысить на 30%?
Решение Так как сосуд с газом закрытый, объем газа не меняется. Изохорный процесс описывается законом Шарля:

По условию задачи температура газа повысилась на 30%, поэтому можно записать:

Подставив последнее соотношение в закон Шарля, получим:

Переведем единицы в систему СИ: начальное давление газа кПа= Па.

Вычислим:

Ответ Давление газа станет равным 260 кПа.

ПРИМЕР 3

Задание В кислородной системе, которой оборудован самолет, имеется кислорода при давлении Па. При максимальной высоте подъема летчик соединяет с помощью крана эту систему с пустым баллоном объемом . Какое давление установится в ней? Процесс расширения газа происходит при постоянной температуре.
Решение Изотермический процесс описывается законом Бойля-Мариотта:

Если в некотором процессе не изменяются масса и температура газа, то такой процесс называется изотермическим.

При m = const T = const P 1 V 1 = P 2 V 2 или PV = const.

ПолученноеPV = const уравнение называется уравнением изотермического процесса .

Это уравнение было получено английским физиком Робертом Бойлем в 1662 году и французским физиком Эдмоном Мариоттом в 1676г.

Уравнение Р 1 / Р 2 = V 2 / V 1 называется уравнением Бойля-Мариотта.

Состояние газа характеризуется тремя макропараметрами:

P - давлением,

V - объёмом,

T - температурой.

При графическом изображении процесса можно указать только два параметра, которые изменяются, поэтому один и тот же процесс можно представить в трёх координатных плоскостях: (Р – V ), (V T ), (P T ).

График изотермического процесса называется изотермой. Изотерма, изображенная в прямоугольной системе координат (P – V), по оси ординат которой отсчитывается давление газа, а по оси абсцисс - его объем, является гиперболой (рис.3).

Изотерма, изображенная в прямоугольной системе координат (V – T), является прямой, параллельной оси ординат (рис.4).

Изотерма, изображенная в прямоугольной системе координат (P – T), является прямой, параллельной оси ординат (рис.5).

Графики изотермического процесса изображаются так:

ИЗОХОРНЫЙ ПРОЦЕСС

Изохорным процессом называется процесс, протекающий при постоянном объёме (V = const ) и при условии m = const и М = const.

При этих условиях из уравнения состояния идеального газа для двух значений температуры Т 0 и Т следует:

P 0 V = m RT 0

Р V = М RT или Р / Р 0 = Т / Т 0

Для газа данной массы отношение давления к температуре постоянно, если объем газа не меняется. При P 1 / P 2 = T 1 / T 2 (это уравнение называется законом Шарля), оно применимо для изохорного процесса: V = const .

Это уравнение изохорного процесса.

Если V - объем газа при абсолютной температуре Т, V 0 - объем газа при температуре 0 0 С; коэффициент а, равный 1/273 K -1 , называемый температурным коэффициентом объемного расширения газов, то уравнение для изохорного процесса можно записать как P = P 0 × a ×T.

Кривая изохорного процесса называется изохорой.

Изохора, изображенная P V ), по оси ординат которой отсчитывается давление газа, а по оси абсцисс - его объем, является прямой, параллельной оси ординат (рис.6).

Изохора, изображенная в прямоугольной системе координат (V T ), является прямой, параллельной оси абсцисс (рис.7).

Изохора, изображенная в прямоугольной системе координат (P T ), по оси ординат которой отсчитывается давление газа, а по оси абсцисс - его абсолютная температура, является прямой, проходящей через начало координат (рис.8).

Экспериментальным путем зависимость давления газа от температуры исследовал французский физик Жак Шарль в 1787г.

Изохорный процесс можно осуществить, например нагреванием воздуха при постоянном объеме.

Графики изохорного процесса изображаются так:

Для описания состояния газа достаточно задать три макроскопических параметра - объем V , давление p и температуру T . Изменение одного из этих параметров вызывает изменение остальных. Если одновременно меняются объем, давление и температура, то на опыте трудно установить какие-либо закономерности. Проще сначала рассмотреть газ неизменной массы (m = const), зафиксировать значение одного из макропараметров (V , p или T ) и рассмотреть изменение при этом двух других.

Процессы, при которых один из параметров p , V или Τ остается постоянным при данной массе газа, называют изопроцессами .

  • isos в переводе с греческого означает «равный».

Законы, описывающие изопроцессы в идеальном газе, были открыты экспериментально.

Изотермический процесс

Изотермический процесс - это изопроцесс, происходящий при постоянной температуре: Τ = const.

  • therme - тепло.

Закон экспериментально открыли независимо друг от друга английский химик и физик Роберт Бойль (1662) и французский физик Эдм Мариотт (1676).

Закон изотермического процесса (Бойля-Мариотта): для данной массы газа при постоянной температуре произведение давления на объем есть величина постоянная:

\(~p \cdot V = \operatorname{const}\) или для двух состояний \(~p_1 \cdot V_1 = p_2 \cdot V_2 .\)

Для осуществления изотермического процесса надо сосуд, наполненный газом, привести в контакт с термостатом.

  • Термостат - это прибор для поддержания постоянной температуры. Подробнее см. wikipedia
  • Изотермическим процессом приближенно можно считать процесс медленного сжатия или расширения газа в сосуде с поршнем. Термостатом в этом случае служит окружающая среда.

Изобарный процесс

Изобарный процесс - это изопроцесс, происходящий при постоянном давлении: p = const.

  • baros - тяжесть, вес.
  • Работа Ж. Шарля была опубликована уже после открытия Ж. Гей-Люссака. Но изобарный процесс в российских учебниках называют законом Гей-Люссака , в белорусских - законом Шарля .

Закон изобарного процесса : при данной массе газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная:

\(~\dfrac{V}{T} = \operatorname{const},\) или \(~\dfrac{V_1}{T_1} = \dfrac{V_2}{T_2} .\)

Этот закон можно записать через температуру t , измеряемую по шкале Цельсия\[~V = V_0 \cdot (1 + \alpha \cdot t),\] где V 0 - объем газа при 0 °С, α = 1/273 К -1 - температурный коэффициент объемного расширения.

  • Опыт показывает, что при малых плотностях температурный коэффициент объемного расширения не зависит от вида газа, т.е. одинаков для всех газов).

Получить изобарный процесс можно при помощи цилиндра с невесомым поршнем.

Изохорный процесс

Изохорный процесс - это изопроцесс, происходящий при постоянном объеме: V = const.

  • chora - занимаемое место, объем.

Закон экспериментально исследовали независимо друг от друга французские физики Жак Шарль (1787) и Жозеф Гей-Люссак (1802).

  • Изохорный процесс в российских учебниках называют законом Шарля, в белорусских - законом Гей-Люссака.

Закон изохорного процесса : при данной массе газа при постоянном объеме отношение давления к абсолютной температуре есть величина постоянная:

\(~\dfrac{p}{T} = \operatorname{const}\), или \(~\dfrac{p_1}{T_1} = \dfrac{p_2}{T_2} .\)

Если температуру измерять по шкале Цельсия, то закон Гей-Люссака запишется в виде\[~p = p_0 \cdot (1 + \alpha \cdot t),\] где p 0 - давление газа при 0 °С, α - температурный коэффициент давления, оказавшийся одинаковым для всех газов: α = 1/273 К -1 .

Получить изохорный процесс можно в баллоне, который не изменяет свой объем при данном изменении температуры.

Тщательная экспериментальная проверка современными методами показала, что уравнение состояния идеального газа и вытекающие из него законы Бойля-Мариотта, Гей-Люссака и Шарля достаточно точно описывают поведение реальных газов при небольших давлениях и не слишком низких температурах.

Немного математики

График функции y (x ), где a, b и с - постоянные величины:

  • y = a⋅x - прямая линия, проходящая через начало координат (рис. 1, а);
  • y = c - прямая, перпендикулярная оси y и проходящая через точку c координатой y = c (рис. 1, б);
  • \(~y = \dfrac{b}{x} \) - гипербола (рис. 1, в).
Рис. 1

Графики изопроцессов

Так как мы рассматриваем три макропараметра p, T и V , то возможно три системы координат: (p , V ), (V , Τ ), (p , Т ).

Графики зависимости между параметрами данной массы при постоянной температуре называются изотермами .

Рассмотрим два изотермических процесса с температурами T 1 и T 2 (T 2 > T 1). В координатах, где есть ось температуры ((V, Τ ) и (p, Т T , и проходящие через точки T 1 и T 2 (рис. 2, а, б).

p, V ). Для изотермического процесса \(~p \cdot V = \operatorname{const}\). Обозначим эту константу буквой z 1 . Тогда

\(~p \cdot V = z_1\) или \(~p = \dfrac{z_1}{V}\).

График этой функции - гипербола (рис. 2, в).

Рис. 2

Графики зависимости между параметрами газа при постоянной массе газа и давлении называют изобарами .

Рассмотрим два изобарных процесса с давлениями p 1 и p 2 (p 2 > p 1). В координатах, где есть ось давления ((p, Τ ) и (p, V )), графиками будут прямые, перпендикулярные оси p , и проходящие через точки p 1 и p 2 (рис. 3, а, б).

Определим вид графика в осях (V, T ). Для изобарного процесса \(~\dfrac{V}{T} = \operatorname{const}\). Обозначим эту константу буквой z 2 . Тогда

\(~\dfrac{V}{T} = z_2\) или \(~V = z_2 \cdot T\).

График этой функции - прямая линия, проходящая через начало координат (рис. 3, в).

Рис. 3

Графики зависимости между параметрами газа при постоянной массе газа и постоянном объеме называют изохорами .

Рассмотрим два изохорных процесса с объемами V 1 и V 2 (V 2 > V 1). В координатах, где есть ось объема ((V, Τ ) и (p, V )), графиками будут прямые, перпендикулярные оси V , и проходящие через точки V 1 и V 2 (рис. 4, а, б).

Определим вид графика в осях (p, T ). Для изохорного процесса \(~\dfrac{p}{T} = \operatorname{const}\). Обозначим эту константу буквой z 3 . Тогда

\(~\dfrac{p}{T} = z_3\) или \(~p = z_3 \cdot T\).

График этой функции - прямая линия, проходящая через начало координат (рис. 4, в).

Рис. 4
  • Все графики изопроцессов прямые линии (исключение, гипербола в осях p (V )). Эти прямые проходят или через нуль, или перпендикулярно одной из осей.
  • Так как давление газа, его объем и температура не могут равняться нулю, то при приближении к нулевым значениям линии графика изображают пунктирными линиями.

Уравнение состояния идеального газа

В изопроцессах два параметра изменялись при постоянном значении третьего. Но возможны случаи, когда меняются сразу три параметра. Например, когда нагретый у поверхности Земли воздух поднимается вверх, то он расширяется, давление его уменьшается и температура понижается.

Уравнение, связывающее температуру T , давление p и объем V для данной массы идеального газа, называют уравнением состояния газа .

Это уравнение было получено экспериментально, но его можно вывести из основного уравнения MKT:

\(~p = n \cdot k \cdot T.\)

По определению концентрация газа

\(~n = \dfrac NV,\)

где N - число молекул. Тогда

\(~p = \dfrac NV \cdot k \cdot T \Rightarrow \dfrac{p \cdot V}{T} = k \cdot N . \qquad (1)\)

При неизменной массе газа число молекул в нем постоянно и произведение \(~k \cdot N = \operatorname{const}.\) Следовательно,

\(~\dfrac{p \cdot V}{T} = \operatorname{const}\) или для двух состояний \(~\dfrac{p_1 \cdot V_1}{T_1} = \dfrac{p_2 \cdot V_2}{T_2} . \qquad (2)\)

Соотношение (2) и есть уравнение состояния идеального газа. Его называют уравнением Клапейрона . Им пользуются в тех случаях, когда масса газа и его химический состав не изменяются и нужно сравнить два состояния газа.

Уравнение Клапейрона-Менделеева

В уравнении (1) число молекул N можно выразить через постоянную Авогадро \(~N = \dfrac mM \cdot N_A\), где m - масса газа, Μ - его молярная масса. Тогда получаем \(~\dfrac{p \cdot V}{T} = \dfrac mM \cdot k \cdot N_A \Rightarrow\)

\(~p \cdot V = \dfrac mM \cdot R \cdot T . \qquad (3)\)

Здесь \(~R = k \cdot N_A\) - универсальная газовая постоянная, равная

R = 1,38·10 -23 Дж/К · 6,02·10 23 моль -1 = 8,31 Дж/(моль·К).

Уравнение (3) - это тоже уравнение состояния идеального газа. В такой форме оно было впервые записано русским ученым Д.И.Менделеевым, поэтому его называют уравнением Клапейрона-Менделеева . Оно справедливо для любой массы газа и связывает между собой параметры одного состояния газа.

Законы Авогадро и Дальтона

Из уравнения состояния вытекают два следствия:

  1. Из формулы (1) получим \(~N = \dfrac{p \cdot V}{k \cdot T}\), откуда видно, что если различные газы занимают при одинаковых температурах и одинаковых давлениях равные объемы, то число N молекул у них тоже одинаково, т.е. вытекает установленный опытным путем закон Авогадро : при равных давлениях и температурах в одинаковых объемах любых газов содержится одинаковое число молекул .
  2. Пусть в сосуде имеется смесь газов, каждый из которых при отсутствии других оказывает соответственно давление p 1 , p 2 , ... (парциальные давления газов). Запишем для каждого газа уравнение состояния:
    \(~p_1 \cdot V = N_1 \cdot k\cdot T, p_2 \cdot V = N_2 \cdot k \cdot T, \ldots\)
    и сложим их:
    \(~p_1+ p_2 + \ldots = \dfrac{(N_1+ N_2 + \ldots) \cdot k \cdot T}{V} = \dfrac{N \cdot k \cdot T}{V},\)
    где N 1 + N 2 + ... = N - число молекул смеси газов. Но \(~\dfrac{N \cdot k \cdot T}{V} = p\) .
    Следовательно, p = p 1 + p 2 + ..., т.е давление смеси газов равно сумме парциальных давлений каждого из газов - это закон Дальтона , открытый им в 1801 г. экспериментально.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 143-146.

На этом уроке мы продолжим изучать связь между тремя макроскопическими параметрами газа, а конкретнее - их взаимосвязь в газовых процессах, протекающих при постоянном значении одного из этих трёх параметров, или изопроцессах: изотермических, изохорных и изобарных.

Рассмотрим следующий изопроцесс - изобарный процесс.

Определение. Изобарный (или изобарический ) процесс - процесс перехода идеального газа из одного состояния в другое при постоянном значении давления. Впервые такой процесс рассмотрел французский учённый Жозеф-Луи Гей-Люссак (рис. 4), поэтому закон носит его имя. Запишем этот закон

А теперь учитывая: и

Закон Гей-Люссака

Из этого закона очевидно следует прямо пропорциональная связь между температурой и объёмом: при увеличении температуры наблюдается увеличение объёма, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и V, имеет следующий вид и называется изобарой (рис. 3):

Рис. 3. Графики изобарных процессов в координатах V-T ()

Следует обратить внимание на то, что, поскольку мы работаем в системе СИ, то есть с абсолютной шкалой температур, на графике присутствует область, близкая к абсолютному нулю температур, в которой данный закон не выполняется. Поэтому прямую в области, близкой к нулю, следует изображать пунктирной линией.

Рис. 4. Жозеф Луи Гей-Люссак ()

Рассмотрим, наконец, третий изопроцесс.

Определение. Изохорный (или изохорический ) процесс - процесс перехода идеального газа из одного состояния в другое при постоянном значении объёма. Процесс рассмотрен впервые французом Жаком Шарлем (рис. 6), поэтому закон носит его имя. Запишем закон Шарля:

Снова запишем обычное уравнение состояния:

А теперь учитывая: и

Получаем: для любых различных состояний газа, или же просто:

Закон Шарля

Из этого закона очевидно следует прямо пропорциональная связь между температурой и давлением: при увеличении температуры наблюдается увеличение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и P, имеет следующий вид и называется изохорой (рис. 5):

Рис. 5. Графики изохорных процессов в координатах V-T

В районе абсолютного нуля для графиков изохорного процесса также существует лишь условная зависимость, поэтому прямую также следует доводить до начала координат пунктиром.

Рис. 6. Жак Шарль ()

Стоит обратить внимание, что именно такая зависимость температуры от давления и объёма при изохорных и изобарных процессах соответственно определяет эффективность и точность измерения температуры с помощью газовых термометров.

Интересен также тот факт, что исторически первыми были открыты именно рассматриваемые нами изопроцессы, которые, как мы показали, являются частными случаями уравнения состояния, а уже потом уравнения Клапейрона и Менделеева-Клапейрона. Хронологически сначала были исследованы процессы, протекающие при постоянной температуре, затем при постоянном объёме а последними - изобарические процессы.

Теперь для сравнения всех изопроцессов мы собрали их в одну таблицу (см рис. 7). Обратите внимание, что графики изопроцессов в координатах, содержащих неизменяющийся параметр, собственно говоря, и выглядят как зависимость константы от какой-либо переменной.

Рис. 7.

На следующем уроке мы рассмотрим свойства такого специфического газа, как насыщенный пар, подробно рассмотрим процесс кипения.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Slideshare.net ().
  2. E-science.ru ().
  3. Mathus.ru ().

Домашнее задание

  1. Стр. 70: № 514-518. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Какова зависимость между температурой и плотностью идеального газа при изобарном процессе?
  3. При надувании щёк и объём, и давление во рту возростают пр неизменной температуре. Противоречит ли это закону Бойля-Мариотта? Почему?
  4. *Как будет выглядеть график данного процесса в координатах P-V?