Инертный газ для ионных и плазменных двигателей. Технологии: фотонный и ионный двигатели - новый ионный двигатель готов к полётам в космос

Европейское космическое агентство провело испытания прямоточного ионного двигателя, использующего в качестве рабочего тела воздух из окружающей атмосферы. Предполагается, что небольшие спутники с таким двигателем смогут практически неограниченно находиться на орбитах с высотой 200 или менее километров, сообщается в пресс-релизе агентства.

Принцип работы ионных двигателей основан на ионизации частиц газа и их разгоне с помощью электростатического поля. Частицы газа в таких двигателях разгоняются до значительно больших скоростей, чем в химических двигателях, из-за чего ионные двигатели имеют гораздо больший удельный импульс и расходуют меньше топлива. Но у ионных двигатель есть и важный недостаток - крайне малая тяга, по сравнению с химическими двигателями. Из-за этого они редко применяются на практике, в основном на небольших аппаратах. К примеру, такие двигатели используются на зонде Dawn, сейчас на орбите карликовой планеты Церера, и будут использоваться в миссии BepiColombo , которая должна отправиться к Меркурию в конце 2018 года.

Как и в химических двигателях, в используемых сейчас ионных двигателях применяется запас топлива, как правило, ксенона. Но существует и концепция прямоточных ионных двигателей, которая, правда, пока не применялась на летавших в космос аппаратах. Ее отличие заключается в том, что в качестве рабочего тела предлагается использовать не конечный запас газа, загружаемый в бак перед запуском, а воздух из атмосферы Земли или другого атмосферного тела.


Схема работы двигателя

ESA–A. Di Giacomo

Предполагается, что относительно небольшой аппарат с таким двигателем сможет практически неограниченно находиться на низких орбитах с высотой примерно от 150 километров, компенсируя атмосферное торможение тягой двигателя, работающего на поступающем в него воздухе из атмосферы. В 2009 году ESA запустило спутник GOCE , который смог за счет постоянно включенного ионного двигателя с запасом ксенона пробыть на 255-километровой орбите в течение почти пяти лет. После этого агентство занялось разработкой прямоточного ионного двигателя для аналогичных низкоорбитальных спутников, и теперь провело первые испытания такого двигателя.

Испытания проходили в вакуумной камере, в которой располагался двигатель. Изначально в него подавали ускоренный ксенон. После этого в газозаборное устройство начали добавлять смесь кислорода с азотом, имитирующую атмосферу на высоте 200 километров. В конце испытаний инженеры провели тесты с исключительно воздушной смесью для проверки работоспособности в основном режиме.


Испытания двигателя с воздухом в качестве топлива


Прямоточный ионный двигатель

Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.

Ионный двигатель: принцип действия

Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить - это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора.

Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.

Немного истории и перспективы

В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса.

К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.

Не секрет, что все реактивные двигатели работают за счёт закона сохранения импульса. Именно из него вытекает, что реактивная тяга - это произведение массового расхода на скорость выхода рабочего тела из сопла .

Эту скорость принято называть удельным импульсом реактивного двигателя. Давайте для примера найдём реактивную тягу при стрельбе из автомата Калашникова, которая является основной составляющей отдачи. Пусть масса пули будет 0,016 кг , начальная скорость пули 700 м/с , а скорострельность 10 выстр./с . Тогда отдача F=700∙0,016∙10=112 Н (или 11 кгс) . Большая отдача, но тут приведена техническая скорострельность 600 выстр./мин. В реальности стрельба ведётся очередями или одиночными и составляет ≈50 выстр./мин.

Выстрел из АК



Вернёмся к реальным реактивным двигателям, в которых вместо пуль обычно используются потоки выходящего с гиперзвуковой скоростью газа. Химические реактивные двигатели являются самыми распространёнными, но не единственными.

В этой статье, с большим предисловием, я хочу рассказать об ионных реактивных двигателях (далее ИРД). ИРД используют в качестве рабочего тела заряженные частицы - ионы. Ионы имеют массу, и если их разогнать электрическим полем, то можно создать реактивную тягу. Это всё в теории, а теперь подробнее. ИРД имеет некоторый запас газа, который ионизируют (т.е. нейтрально-заряженные атомы газа разбивают на отрицательные электроны и положительные ионы) с помощью газового разряда. Далее ионы разгоняются электрическим полем с помощью специальной системы сеток, и эта же система сеток блокирует движение электронов. После того, как положительные ионы вылетели из сопла, их нейтрализуют отрицательными электронами (в результате этого происходит рекомбинация и газ начинает светиться), чтобы ионы не притягивались обратно к двигателю, и тем самым не снижали его тяги.

Почему ксенон?

Обычно в ИРД в качестве рабочего тела используется газ ксенон, так как он имеет наименьшую энергию ионизации среди инертных газов.


Удельный импульс ионных реактивных двигателей достигает 50 км/с, что в 150 раз превышает скорость звука! Увы, но тяга таких двигателей составляет около 0,2 Н. Почему же так? Ведь удельный импульс очень большой. Дело в том, что масса ионов очень маленькая и массовый расход получается небольшим. Для чего тогда такие двигатели нужны, если они ничего не смогут сдвинуть с места? На Земле может быть не смогут, а вот в космосе, где нет сил сопротивления, они достаточно эффективные. Существует такое понятие как полный импульс - произведение тяги на время или произведение удельного импульса на массу топлива , который у ИРД является достаточно большим.

Решим следующую задачу. Пусть жидкостный ракетный двигатель имеет удельный импульс 5 км/с, а у нашего ИРД он будет 50 км/с. И давайте масса рабочего тела (в ЖРД она равна массе топлива) у обоих двигателей будет 50 кг. Примем массу космического аппарата равной 100 кг.
Найдём по формуле Циолковского конечную скорость аппарата (т.е. когда в нём закончится рабочая масса).

И что получается, если ионный и химический реактивные двигатели будут иметь одинаковую массу топлива, то ИРД сможет разогнать космический аппарат до больших скоростей, нежели химический РД. Правда на ИРД космический аппарат будет разгонятся дольше до конечной скорости, чем на ЖРД. Но в путешествиях к далёким планетам, высокая конечная (разгонная) скорость будет компенсировать этот недостаток.

Схема полёта к Марсу на ИРД



ИРД используются и в наше время. Например, аппарат Deep Space 1 сблизился с астероидом Брайль и кометой Борелли, передал на Землю значительный объём ценных научных данных и изображений.


Deep Space 1

Также космическая антенна LISA, которая сейчас находится на стадии проектирования, будет использовать ИРД для корректировки орбиты.


Laser Interferometer Space Antenna

И напоследок, давайте определим тягу ИРД, зная массу иона М=6,5∙10^-26 кг , ускоряющие напряжение U=50 кВ , ток нейтрализации I=0,5 А , элементарный заряд е=1,6∙10^-16 Кл .

Напряжение - это работа по переносу заряда, т.е. на выходе из сопла ион будет иметь кинетическую энергию равную произведению напряжения на заряд иона. Из кинетической энергии выражаем скорость (удельный импульс). Найдём массовый расход из определения тока, электрический ток - это проходящий заряд во времени. Получается, что массовый расход - это произведение массы иона и тока, делённое на заряд иона. Перемножая удельный импульс и массовый расход, получаем тягу равную 0,1 Н.

Подводя итог, хочу сказать, что существуют плазменные реактивные двигатели, у которых схожее устройство, но которые имеют намного больший массовый расход рабочего тела. Кто знает, может быть уже завтра на таких двигателях человечество будет летать на Марс и Луну.

Не секрет, что все реактивные двигатели работают за счёт закона сохранения импульса. Именно из него вытекает, что реактивная тяга - это произведение массового расхода на скорость выхода рабочего тела из сопла .

Эту скорость принято называть удельным импульсом реактивного двигателя. Давайте для примера найдём реактивную тягу при стрельбе из автомата Калашникова, которая является основной составляющей отдачи. Пусть масса пули будет 0,016 кг , начальная скорость пули 700 м/с , а скорострельность 10 выстр./с . Тогда отдача F=700∙0,016∙10=112 Н (или 11 кгс) . Большая отдача, но тут приведена техническая скорострельность 600 выстр./мин. В реальности стрельба ведётся очередями или одиночными и составляет ≈50 выстр./мин.

Выстрел из АК



Вернёмся к реальным реактивным двигателям, в которых вместо пуль обычно используются потоки выходящего с гиперзвуковой скоростью газа. Химические реактивные двигатели являются самыми распространёнными, но не единственными.

В этой статье, с большим предисловием, я хочу рассказать об ионных реактивных двигателях (далее ИРД). ИРД используют в качестве рабочего тела заряженные частицы - ионы. Ионы имеют массу, и если их разогнать электрическим полем, то можно создать реактивную тягу. Это всё в теории, а теперь подробнее. ИРД имеет некоторый запас газа, который ионизируют (т.е. нейтрально-заряженные атомы газа разбивают на отрицательные электроны и положительные ионы) с помощью газового разряда. Далее ионы разгоняются электрическим полем с помощью специальной системы сеток, и эта же система сеток блокирует движение электронов. После того, как положительные ионы вылетели из сопла, их нейтрализуют отрицательными электронами (в результате этого происходит рекомбинация и газ начинает светиться), чтобы ионы не притягивались обратно к двигателю, и тем самым не снижали его тяги.

Почему ксенон?

Обычно в ИРД в качестве рабочего тела используется газ ксенон, так как он имеет наименьшую энергию ионизации среди инертных газов.


Удельный импульс ионных реактивных двигателей достигает 50 км/с, что в 150 раз превышает скорость звука! Увы, но тяга таких двигателей составляет около 0,2 Н. Почему же так? Ведь удельный импульс очень большой. Дело в том, что масса ионов очень маленькая и массовый расход получается небольшим. Для чего тогда такие двигатели нужны, если они ничего не смогут сдвинуть с места? На Земле может быть не смогут, а вот в космосе, где нет сил сопротивления, они достаточно эффективные. Существует такое понятие как полный импульс - произведение тяги на время или произведение удельного импульса на массу топлива , который у ИРД является достаточно большим.

Решим следующую задачу. Пусть жидкостный ракетный двигатель имеет удельный импульс 5 км/с, а у нашего ИРД он будет 50 км/с. И давайте масса рабочего тела (в ЖРД она равна массе топлива) у обоих двигателей будет 50 кг. Примем массу космического аппарата равной 100 кг.
Найдём по формуле Циолковского конечную скорость аппарата (т.е. когда в нём закончится рабочая масса).

И что получается, если ионный и химический реактивные двигатели будут иметь одинаковую массу топлива, то ИРД сможет разогнать космический аппарат до больших скоростей, нежели химический РД. Правда на ИРД космический аппарат будет разгонятся дольше до конечной скорости, чем на ЖРД. Но в путешествиях к далёким планетам, высокая конечная (разгонная) скорость будет компенсировать этот недостаток.

Схема полёта к Марсу на ИРД



ИРД используются и в наше время. Например, аппарат Deep Space 1 сблизился с астероидом Брайль и кометой Борелли, передал на Землю значительный объём ценных научных данных и изображений.


Deep Space 1

Также космическая антенна LISA, которая сейчас находится на стадии проектирования, будет использовать ИРД для корректировки орбиты.


Laser Interferometer Space Antenna

И напоследок, давайте определим тягу ИРД, зная массу иона М=6,5∙10^-26 кг , ускоряющие напряжение U=50 кВ , ток нейтрализации I=0,5 А , элементарный заряд е=1,6∙10^-16 Кл .

Напряжение - это работа по переносу заряда, т.е. на выходе из сопла ион будет иметь кинетическую энергию равную произведению напряжения на заряд иона. Из кинетической энергии выражаем скорость (удельный импульс). Найдём массовый расход из определения тока, электрический ток - это проходящий заряд во времени. Получается, что массовый расход - это произведение массы иона и тока, делённое на заряд иона. Перемножая удельный импульс и массовый расход, получаем тягу равную 0,1 Н.

Подводя итог, хочу сказать, что существуют плазменные реактивные двигатели, у которых схожее устройство, но которые имеют намного больший массовый расход рабочего тела. Кто знает, может быть уже завтра на таких двигателях человечество будет летать на Марс и Луну.

Плазма между анодом и катодом ионного двигателя.

Фотография: Joao Duarte / eLab hackerspace

Португалец Жуан Дуарте собрал в домашних условиях простую рабочую модель ионного двигателя. Рассказ о своем проекте разработчик опубликовал на портале eLab hackerspace. В его двигателе используются несколько держателей, подставка, корпус и сопло, напечатанные из пластика на 3D-принтере, семь гвоздей, семь медных трубок и высоковольтный трансформатор.

При строительстве ионного двигателя важна высокая электрическая проводимость всех элементов. Для ее увеличения Дуарте покрыл гвозди тонким слоем меди. Он зачистил гвозди от ржавчины, а затем опустил их вместе с окислившимися медными монетами в раствор соли и уксуса. Благодаря меднению электрическая проводимость на поверхности гвоздей увеличилась.

Затем португалец взял медную трубу диаметром два сантиметра и нарезал ее на пять частей длиной пять сантиметров каждая. После этого Дуарте распечатал на принтере держатели для трубок и гвоздей, подставку, кожух двигателя и сопло. Для эффективной работы ионного двигателя кончики медненных гвоздей должны находиться точно в центре окружности медных трубок.


На каком расстоянии от трубок следует разместить гвозди от трубок Дуарте не уточнил, но отметил, что оно должно быть одинаковым для всех гвоздей. Для регулирования тяги португалец сделал держатель с гвоздям подвижным в горизонтальной плоскости. К трубкам и гвоздям Дуарте подключил трансформатор, способный выдавать напряжение в девять киловольт и силу тока в 50 миллиампер.

В конструкции двигателя гвозди выступают в качестве катода, а медные трубки - анода. При включении напряжения воздух вокруг гвоздей ионизируется и притягивается анодом, возникает воздушный поток, который и формирует незначительную тягу за соплом двигателя. Сдвинутся с места такая силовая установка не может, но способна колыхать обрезки бумаги.

Концепцию ионного двигателя впервые предложил американский ученый Роберт Годдард. В 1954 году технологию детально описал ученый Эрнст Штулингер, а первый функционирующий двигатель был собран в 1959 году в NASA. Он смог проработать на протяжении 31 минуты. В качестве маршевого двигателя ионная силовая установка была впервые использована на космическом аппарате Deep Space в 1998 году.

Современные ионные двигатели способны непрерывно работать на протяжении трех лет. В них для создания реактивной тяги используются как правило аргон или ксенон. Эти инертные газы разгоняются в электрическом поле. Положительными качествами ионного двигателя является малое энергопотребление и расход топлива, а серьезным недостатком - микроскопическая тяга, составляющая до 250 миллиньютонов.