Есть ли новые разработки двигателей на автомобили. Перспективы

Статья взята с третьих рук, но исходно с Эксперта: http://expert.ru/expert/2016/49/dvigatel-energorevolyutsii/

Двигатель внутреннего сгорания (ДВС) с механическим КПД 95% практически не имеет вредных выхлопных газов и способен при расходе топлива три литра на 100 км развивать мощность 300 л. с. А общий КПД чудо-двигателя, работающего на бензине, составляет порядка 60%. Это кажется невероятным, ведь КПД массовых автомобильных бензиновых ДВС не превышает 25%, дизельных - 40%. Этот проект - реально работающий прототип, собранный в «подвале» небольшого мебельного завода. Новые технологии, примененные в этом движке, запатентованы в России, США и даже в Японии. Все попытки зарубежных компаний купить эти разработки патриотом-кулибиным были отвергнуты, хотя предлагались суммы, в 20 раз превышающие стоимость всего его бизнеса. Представляется, что этот проект может создать серьезную конкуренцию электромобилю.

Ротор для аммиака и сварочный трансформатор

Создатель двигателя оказался автором более 50 патентов, в том числе международных. Александр Николаевич Сергеев - разработчик оригинальной технологии сварки роторов для производства аммиака, источников питания сварочной дуги, аэродинамических спойлеров для вазовских автомобилей и еще более 50 изделий, до сих пор применяющихся в шести отраслях промышленности. Свой первый патент на изобретение Сергеев получил, еще будучи студентом, в 1970-х, и был удостоен почетного тогда звания «Молодой ученый года», а через три года, поступив на работу инженером на завод «Азотреммаш» (ныне часть холдинга «Тольяттиазот» - крупнейшего в мире производителя азота), произвел технологическую революцию в отрасли. Разработанная им технология сварки рабочих колес центробежных компрессоров позволила увеличить ресурс работы этих агрегатов в несколько раз и отказаться от поставок аналогичных устройств из США.

Мы впервые в мире сделали цельносварной ротор, - объясняет Александр. - Это основной в производстве аммиака узел - узел сжатия газа до давления свыше 300 атмосфер при гиперзвуковых окружных скоростях рабочих колес компрессоров. По теме сварки магнитоуправляемой дугой у меня порядка пятнадцати авторских. Если вкратце, там, по сути, было сделано открытие по влиянию электромагнитного поля на электропроводность и теплопроводность.

Наработки в области сварки, созданные в рамках химпрома, пригодились в других отраслях. Сергеевым был разработан сварочный трансформатор, по своим характеристикам превышающий те, что продавались на рынке, при этом его стоимость была на 30% ниже, а площадь занимаемого пространства сократилось в пять раз. В 1980-х годах изобретатель хотел предложить свои разработки начальству, однако в стране грянула перестройка, началось кооперативное движение; Сергеев ушел с завода и, прихватив с собой костяк своей команды, организовал предприятие, выпускающее промышленное сварочное оборудование.

Я пришел в госбанк, сказал, что мы хотим кооператив организовать. Говорят: напишите бизнес-план. Я рукой на листочке формата А4 накалякал, прямо при них. Шестьдесят тысяч рублей первый кредит мы взяли. Просто девочка приезжала от банка, проверяла целевое использование, - вспоминает ученый.

От спойлеров для ВАЗов до мебели

В 1999 году Сергеев начал разработки в области химии пластиков. Он основал компанию «Техноком», которая, используя его изобретения, создала спойлеры для новых моделей АвтоВАЗа. Если вкратце, то Сергеев придумал, как сделать пенополиуретан прочным и легким - то, что за многие годы по техзаданиям автогиганта не могли осуществить компании, претендующие на контракт с АвтоВАЗом. В результате получился композиционный материал, выдерживающий механические нагрузки на уровне технической пластмассы. На главный конвейер АвтоВАЗа компания за несколько лет поставила свыше миллиона спойлеров. Сергеев защитил проект в венчурном фонде Самарской области, получив финансирование на закупку оборудования, а также посевные инвестиции в целом на 70 млн рублей. Через три года компания «Техноком» начала изготавливать изделия из пенополиуретана для мебельной отрасли - элементы для оформления фасадов зданий под торговой маркой Modus Decor. Сегодня «Техноком» входит в тройку лидеров этого рынка, в котором, кстати, до прихода тольяттинцев практически безраздельно царил импорт. На вопрос, доволен ли Сергеев своим мебельным бизнесом, я получил неожиданный ответ: «Этот бизнес я запустил только для того, чтобы заработать денег для настоящего дела моей жизни - создания двигателя внутреннего сгорания, работающего на новых принципах». В «подвале» Modus Decor Сергеев уже много лет занимается разработкой нового двигателя, а в этом году построил работающий прототип.

Двигатель мечты

Передо мной был с виду обычный ДВС - двигатель внутреннего сгорания, которые применяются в транспортных средствах, малой энергетике, малой авиации и много где еще. Странным было только то, что, во-первых, он был двухтактным, а во-вторых, никакой дроссельной заслонки в нем я не обнаружил. Движок был подключен к стандартному промышленному газоанализатору, позволяющему с точностью до сотых долей определять состав выхлопных газов и их количественные характеристики - СО, СО2, CH, О2, а также коэффициент избытка воздуха λ - так называемая лямбда. Сергеев запустил двигатель (на бензине), который начал издавать вполне узнаваемые звуки работающего поршневого механизма, а вот газоанализатор стал показывать странные вещи - состав выхлопных газов мало чем отличался от состава обычного воздуха (кроме мизерного количества углеводородов): СО - 0,1%, СО2 - 3%, СН - 250 единиц, и О2 - 18%. Здесь стоит напомнить, что в воздухе, которым мы дышим, кислорода как раз 18% (от 17 до 21%, если быть точным). А в выхлопе даже самых дорогих четырехтактных двигателей самого высокого экологического стандарта содержание газов такое: СО - 0,5%, СО2 - 15%, СН - 220 единиц (без каталитического нейтрализатора), О2 - 0,5%. Лямбда (λ) в новом движке - 2÷5.

Вот смотри, нет дроссельной заслонки, но это двухтактный цикл. Один цилиндр крутит четырехцилиндровую кинематическую схему, - показывает Сергеев на детали движка, наслаждаясь произведенным на меня эффектом. - Вот сейчас закрываю впускной коллектор. Это как бы дроссельная заслонка. Это чтобы показать, что газоанализатор нормально работает. Для специалистов это сразу понятно. Сейчас лямбда начнет появляться. Вот лямбда равна 1,43 - значит, прибор работает. Вот сейчас кислорода меньше и уже тащится СН, тысяча с лишним. Вот открыли, с полным наполнением начал работать. Все: кислород растет, СО падает, СО2 падает. Когда приходят спецы, которые понимают в теме, они просто не верят. Двигатель работает практически на воздухе.

Двигатель из «подвала» тольяттинского мебельщика вовсе не загрязняет атмосферу. При этом расход топлива у него получается каким-то фантастически низким: 2,7–3 л на 100 км при развиваемой мощности 300 л. с. По мощности это ДВС, стоящий, например, в «Инфинити», который жрет минимум 14 л на 100 км. Обеспечиваются такие параметры за счет того, что в камере сгорания топливовоздушная смесь сгорает полностью. А вот как это достигается? Во-первых, двигатель сконструирован по схеме бесшатунного механизма, который инженер Сергей Баландин придумал еще в годы Второй мировой войны. Сталинский ученый не успел завершить свои разработки, так как появилась турбореактивная тяга, а его идеи поршневого ДВС так и не были воплощены в жизнь. Тем не менее интерес к этой схеме среди изобретателей остался. У Баландина было много последователей, но дальше всех в промышленном применении продвинулсяАлексей Вуль . Сергеев же сумел развить технологию до эффективно работающего прототипа и добиться результата. Кроме того, в движке Сергеева использованы изобретенные им принципиально новые способы смесеобразования и сжигания топлива.

Все гениальное просто

Чем интересна схема Баландина? При работе этого двигателя нет бокового давления поршней на стенки цилиндра, - рассказывает Александр Сергеев. - За счет этого механический КПД повышается до 95 процентов. Второе: там можно увеличить линейную скорость поршня. Значит, можно увеличить мощность. До сих пор эту кинематическую схему никто не реализовал в промышленных объемах.

Десять лет назад Сергеев задался вопросом: вот есть древнее устройство, существующее «тысячу лет», - примус. В нем топливо сжигается практически на сто процентов, и никто не угорает. Почему? Потому что в примусе керосин сначала испаряется, переходит из жидкой фазы в газовую и только потом горит. Чтобы сгореть, топливо должно пройти подготовку к химической реакции горения - перейти из жидкой фазы в газовую. Раньше в ДВС был карбюратор, где смесь готовилась. Но все равно это была жидкая фаза. Сейчас сделали непосредственный впрыск, когда форсунки высокого давления впрыскивают топливо прямо в рабочий цилиндр. Однако тоже в жидкой фазе. Иначе в двигателе Сергеева: после газификации топливовоздушной смеси гомогенная смесь поступает в камеру сгорания новой геометрии с глубоким расслоением заряда по плотности. Это обеспечивает концентрацию богатой топливовоздушной смеси в районе электродов свечи зажигания, что обеспечивает ее уверенное поджигание, а после воспламенения смеси сгорает бедная топливовоздушная смесь, обеспечивая практически полное сжигание с минимальной токсичностью отработанных газов. Объединение преимуществ бензиновых и дизельных двигателей, а также бесшатунной кинематической схемы позволило создать поршневой двигатель с фантастическими характеристиками.

«Особое мнение» АвтоВАЗа и «Ростеха»- Я посмотрел, что в мире за последнее время сделали. Американцы придумали поджигать бензин керосином. Гибриды. Но здесь надо еще посмотреть, какая экология при производстве аккумуляторных батарей. А потом - как это все утилизировать. Где эти зарядные станции ставить? И все равно нужен бензиновый двигатель, который будет крутить этот генератор, - справедливо рассуждает ученый.

Свои изобретения наш тольяттинский Кулибин запатентовал, причем не только в России, но и в США и даже в Японии (получить патент в Японии невероятно сложно, об этом знают все технические специалисты в мире). После публикации в федеральном журнале патентов США (обязательная процедура) этот патент был избран из 28 тысяч в сотню «самых интересных», и статью о новых технологиях Сергеева с заголовком «Новое рождение ДВС» напечатал авторитетный американский журнал Science. Сразу после выхода публикации в свет, буквально на следующий день, Сергееву посыпались письма от американских производственных компаний и венчурных фондов; запросы о продаже технологии пришли в том числе от оборонных предприятий, связанных с гигантами Lockheed Martin и DARPA. Большинство предлагали оплатить прилет нашего ученого в Штаты и там провести переговоры, не называя цену, а некоторые сразу шли ва-банк и сумму сделки называли. Самая большая сумма, обозначенная в этих письмах (копии есть в распоряжении «Эксперта»), - 220 млн долларов. Учитывая, что совокупная стоимость всех активов изобретателя не превышает и 10 млн долларов, предложение более чем привлекательное.

Были предложения о сотрудничестве и от японских корпораций. В одном письме указывается, что в Японии принята частно-государственная программа разработки нового двигателя внутреннего сгорания, в которой целью ставится создание ДВС, которые будут на 30% экономичнее и более экологически чистыми (выход СО2 снизить на 20%, СО - на 35%), чем существующие сегодня. На программу выделено 10 млрд долларов, из которых 50% - финансирование от правительства страны. Поставлена цель к 2020 году выйти на демонстрацию работающего прототипа. Как же они все там были расстроены, когда узнали, что в России уже создали такой прототип, причем с характеристиками на порядок выше тех, что заложены в их амбициозной программе. Однако выстроившиеся в очередь покупатели из разных стран все как один получили отказ, а сам Сергеев твердо решил остаться истинным патриотом, найти российских инвесторов.

А вот на АвтоВАЗе - главном предприятии, которое могло бы внедрить разработки в области ДВС, когда Сергеев показал документы и видео своего движка, просто отмахнулись.

Еще в 2009 году главный конструктор ВАЗа Петр Михайлович Прусов хотел созвать всероссийскую конференцию по двигателестроению, чтобы я сделал доклад. Но тогда на завод приехали москвичи с французами, власть тут начала меняться, и все это похерилось. Я показал данные и видео нынешнему руководству завода, но они сказали, что этого не может быть. Они думали, что это фальсификация, - удивляется Сергеев.

В «Ростехе», куда я обратился за комментарием, полтора месяца просто «кормили завтраками». Затем оттуда пришел ответ, но корпорация даже не связалась с Сергеевым. «Макет одноцилиндрового двухтактного двигателя внутреннего сгорания разработки А. Н. Сергеева не применим для продукции Госкорпорации “Ростех”: ОДК занимается разработкой и созданием авиационных, ракетных и газоперекачивающих двигателей. Для беспилотников производства ОПК и Калашникова используются системы, к которым данный двигатель не применим. Двигатель не подходит и к текущим автомобилям производства АвтоВАЗ. В иной ситуации для автомобилей потребуется серьезная техническая доработка конструкции и управляющих систем, помимо этого не проработаны вопросы экологии в связи с двухтактностью цикла». То есть, переводя на человеческий язык, ответ можно расшифровать так: ОДК - Объединенная двигателестроительная корпорация - несмотря на заявленные в уставе цели и задачи развития всего существующего в промышленности спектра технологий двигателестроения, не хочет браться за новое направление, а переделывать конструкции беспилотников и автомобилей под новый двигатель, на разработку которых «Ростех» уже потратил деньги и время, специалисты госкорпорации считают нецелесообразным. Несмотря на то, что эта простая подгонка под основной узел (двигатель) приведет к настоящей технологической и энергетической революции. Про «вопросы экологии в связи с двухтактностью цикла» я вообще лучше промолчу, ибо здесь доблестный «Ростех» просто «спалился» в том, что его специалисты даже не прочитали присланного мной протокола комиссии Самарского университета.

Из ОДК пришло вообще странное письмо, отражающее чудовищную некомпетентность людей из правления госхолдинга. Цитирую: «Предлагаемые диапазоны мощностей (до 300 л. с.) уже сейчас осваиваются ГМЗ “Агат” совместно с ЦИАМом (Центральный институт авиационного приборостроения им. Баранова. -“Эксперт” ) и ОКБ моторостроения…» Хотя любой студент знает из курса теплотехники, что бесшатунная кинематическая схема (схема Баландина) как раз ценна тем, что не имеет ограничений по увеличению мощности двигателя (от тех же 300 л. с. можно легко прыгнуть до 1000 л. с. и больше, если это необходимо), поскольку из-за отсутствия бокового давления на стенки цилиндра линейную скорость поршня можно увеличивать практически до бесконечности. Дальше специалисты ОДК пишут: «Рынок отечественных ЛА с ДВС очень ограничен, возможно, разовьется в ближайшем будущем, но пока он крайне узок». Логика железная… Если кто-то выпустит на мировой рынок, скажем, беспилотник (или небольшой самолет, использующий поршневой двигатель), который расходует в три-четыре (!) раза меньше топлива, чем существующие современные аналоги, и который, соответственно, может автономно летать в несколько раз дольше, догадайтесь, какой истерически сумасшедший спрос будет на него.

Однако рациональное зерно в ответе ОДК все же нашлось. Специалист компании сообщил, что «существующая редакция “Стратегии развития поршневого двигателестроения” предлагает создание центра компетенции по авиационным поршневым двигателям на базе ЦИАМ»; на мой взгляд, это сейчас правильно, потому что ОДК этим ну совсем некогда, да и не на чем (в смысле базы) заниматься, - поэтому разработчикам есть смысл обратиться именно в ЦИАМ. Теперь стала понятна структура компетенций государства в области развития поршневых двигателей. Но обращение в ЦИАМ оказалось бесполезным. Пресс-секретарь института лишь сообщила: «Документы передала специалистам, может быть, с вами свяжутся…»

Адекватные ученые

Сергеев показал разработки одному из основных научных институтов по теме ДВС в России - кафедре тепловых двигателей Самарского национального исследовательского университета им. С. П. Королева. Ее специалисты приехали на мебельный завод буквально на следующий день после получения письма. Делегацию возглавил академик Российской академии транспорта, член-корреспондент Российской академии космонавтики, доктор технических наук, профессор Владимир Бирюк - ученый с мировым именем, который является главным экспертом Ракетно-космической корпорации «Энергия», Роскосмоса, Минпромторга и т. д. В состав комиссии также вошли главный инженер научного центра газодинамических исследований Игорь Ниппард , инженерАлексей Горшкалев и завлабораторией ДВС Самарского университета, кандидат технических наук Дмитрий Сармин . В интервью «Эксперту» Владимир Бирюк рассказал, что был поражен увиденным в Тольятти, но после проверки всех показателей двигателя никаких сомнений не осталось. Выездная комиссия приняла решение срочно заняться этим проектом в приоритетном порядке.

Протокол совместного совещания гласит: «Обсуждали работу рабочего макета одноцилиндрового, двухтактного двигателя внутреннего сгорания с техническими характеристиками и показателями, превышающими существующие в мировом двигателестроении аналоги. Основным отличием данного двигателя является: принципиально новая схема смесеобразования и сжигания топлива, обеспечивающее практически полное сжигание топлива с коэффициентом избытка воздуха на режимах холостого хода и частичных нагрузках в интервале 3 ≤ λ ≤ 5, что обеспечило значительное снижение расхода топлива на этих режимах и снизило токсичность отработанных газов. СО = 0,1%, СН = 250÷350, СО2 = 3÷5%, О2 = 12÷18%. Новые решения смесеобразования и сжигания топлива защищены патентами РФ, США и Японии. Данный двигатель является многотопливным и может работать в режиме холостого хода и частичных нагрузках в двухтактном цикле с двойной продувкой, снижая расход топлива на этих режимах, и двухтактном цикле на мощностных режимах, что позволяет развить максимальную мощность двигателя. Демонстрация и обсуждение работы одноцилиндровой модели представленного ДВС позволяет принять решение: признать целесообразным создание совместной рабочей группы для дальнейшей разработки и изготовления опытного образца двигателя объемом 2 л, мощностью 250÷300 л. с., с крутящим моментом не менее 300 Н·м и массой не более 150 кг, признать целесообразным разработку опытного образца двигателя мощностью 30–35 л. с. при минимальной массе».

Один из ведущих в мире экспертов по теплофизике профессор кафедры компьютерной теплофизики и энергофизического мониторинга Санкт-Петербургского национального исследовательского университета ИТМО доктор технических наукНиколай Пилипенко не поверил в существование двигателя с механическим КПД 95%. В интервью «Эксперту» он заявил: «Такого просто не может быть. Тут какая-то уловка. Иначе это была бы настоящая мировая сенсация на уровне создания атомной бомбы». Опрошенные нами научные светила в сфере теплофизики, теплотехники и поршневого двигателестроения в других странах тоже лишь усмехались в трубку, указывая на существование в мире тысяч всевозможных «революционных» проектов, начиная с вакуумных поездов и заканчивая ионными или плазменными двигателями, но это все «прожекты на бумаге», которые в реальности нереализуемы ввиду либо конструкционных особенностей, либо отсутствия спроса. Однако после предъявления международных патентных удостоверений люди в основном просили дать координаты изобретателя. Профессор Осакского университета Юкио Сакэ , который уже тридцать лет занимается разработками газодинамических систем двигателей для японских автоконцернов, предложил создать совместное российско-японское предприятие для завершения разработок и организации производства двигателей. А ведущий инженер Центра теплотехнического инжиниринга во Франкфурте-на-Майне (ведет разработки по контракту с BMW и Volkswagen) Габриэль Вайнц удивился, что «проект до сих пор не “проглотил” какой-нибудь предприимчивый инвестор» и пригласил Сергеева в Германию для совместной работы и организации международной конференции. Впрочем, этим инвестором, по логике вещей, должно стать государство, поскольку новые двигатели имеют большой потенциал использования в военной технике и вооружении.

Лед тронулся

Пока же государство в своей чудовищной неповоротливости думает, изобретатель Сергеев уже делает следующие шаги. Теперь он вместе со специалистами Самарского университета формирует команду разработчиков для доведения движка до совершенства, внедрения других разработанных им технологий и создания силовых установок для различных задач - автомобили, беспилотники, малая авиация, малая электрогенерация, корабли и т. д. Готовится документация для 35 новых патентов, позволяющих защитить ноу-хау, которые еще только предстоит реализовать в новом двигателе. Понятно, что денег у университета нет и сегодня проекту срочно требуется стратегический инвестор. Разработками Сергеева уже заинтересовалась РКК «Энергия» и компания - разработчик ударных беспилотников для Минобороны.

Массовое внедрение ДВС с качественно более высоким КПД, безусловно, позволит сделать экономику более энергоэффективной. Вы только вдумайтесь: сегодня более 80% энергии в мире производят двигатели внутреннего сгорания. Электроэнергия будет стоить копейки (можно будет автономно отапливать дом электричеством от мини-электростанции по цене в три раза ниже, чем от магистральных сетей), а сама генерация станет доступной даже в глухой тайге. А автомобили? Представьте себе джип с 300-сильным движком, который расходует лишь три литра горючего на 100 км, или обычную легковушку, буквально «нюхающую» топливо по 0,5 литра на 100 км. При этом заливать в бак можно будет не только бензин определенного октанового числа, а буквально все, что горит: нет поблизости заправки - залил бутылку водки и доехал.

Заявка на сенсацию

Механический КПД предлагаемого двигателя в 95% достигается за счет использования кинематической схемы бесшатунного механизма (механизма Баландина), при которой значительно уменьшаются потери на преодоление сил трения за счет исключения бокового давления поршня на стенки рабочего цилиндра. У лучших ДВС с кривошипно-шатунным механизмом механический КПД остается на уровне 90%.

Топливная эффективность двигателя Александра Сергеева достигает 98% за счет организации нового запатентованного процесса смесеобразования и сжигания топлива, обеспечивающего полное сжигание топлива в рабочем цилиндре.

Термодинамический КПД предлагаемой разработки составляет 60–65% за счет организации работы бензинового двигателя в двухтактном цикле с полным наполнением рабочего цилиндра атмосферным воздухом на всех режимах его работы, при степени сжатия ε = 14÷20 без детонации.

Разработанный двигатель устойчиво работает в двухтактном цикле с двойной продувкой, в режимах холостого хода и частичной нагрузки (основные режимы работы двигателя в городском режиме и движении по трассе, что составляет ≈80÷85% работы ДВС), то есть один ход рабочий, следующий продувочный, что идеально готовит рабочий цилиндр к следующему рабочему циклу. Это позволяет дополнительно уменьшить расход топлива и обеспечить оптимальный температурный режим работы двигателя, что также способствует повышению теплового (термодинамического) КПД двигателя.

На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания.

Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.

И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.

Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему. Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.

В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:

Двигатель Scuderi

Группа Scuderi представляет двигатель разделенного цикла - он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.

Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.

Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.

Разделение двигателя на горячую и холодную части

Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует разные температуры в разных частях двигателя, для достижения максимального КПД.

Большая проблема в обычном четырехтактном двигателе - первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в горячих условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.

Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.

Двигатель Pinnacle


В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.

Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2015, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.

Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.

В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.

Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100 км.

Замена обычных свечей зажигания на лазеры


Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.

Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.

Процесс сгорания TSCiTM

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость - это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное -- вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95?97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает -- ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI -- пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них -- неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный -- компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов -- в режиме HCCI. Инженеры Nissan также не стоят на месте -- недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.

Горячая стена

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Скудери.

Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, где создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, ее форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в камере смешивается с топливом и возгорается. Процесс сгорания намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда -- «горячая стена», которая служит аккумулятором энергии: неизменная температура и давление в ней сохраняются в 10?100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр.

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще "топчется" вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Хафиятуллин Ринат:

Также мотор оснащен управляемым электроникой турбокомпрессором, который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций. При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров - 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3-4 л на 100 км.

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3-4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе – исключительно простая конструкция и низкая себестоимость. Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Двигатель Achates Power имеет предельно простую конструкцию

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие "традиционные" дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания. В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость – это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками. Так, при потреблении 3-4 литров на "сотню", двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.


Секрет выдающихся характеристик кроется в схеме работы Grail Engine

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса. В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками. Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Михаил Левкевич

Двигатели - механизмы, приводящие в движение транспорт или машину. Двигатели работают на топливе (например, двигатели внутреннего сгорания), на ядерной энергии (РИТЭГ), на электричестве (двигатели электромобилей), на водороде, на газу, на дизельном топливе и на многом другом. Тип топлива двигателя определяет его экологичность и другие качества. Двигатели прошли довольно длинную историю, но она еще далеко не окончена. Ученые и инженеры постоянно думают над новым топливом и новыми двигателями, стремясь уместить больше энергии в меньшее количество расходов.

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в - он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

В конце 2018 года, в ходе очередной переписки в твиттере, основатель SpaceX упомянул российский ракетный двигатель РД-180. Он признал его конструкцию «блестящей» и намекнул, что компаниям Boeing и Lockheed должно быть стыдно за его использование в ракете Atlas. Он пообещал, что его двигатель Raptor опередит российскую разработку, и сдержал слово - стало известно, что ракетный двигатель для космического корабля Starship опередил РД-180 по уровню давления в камере сгорания.

В то время как все те же основные принципы, которые приводили в движение первые автомобильные двигатели, всё ещё используются и сегодня, современные моторы сильно эволюционировали, чтобы соответствовать требованиям мощности, экологичности и эффективности для выполнения потребностей современных водителей и, конечно же, законодательных рамок.

Подумайте о старых двигателях, как о волках и о современных, как о собаках. Оба вида животных имеют одно и то же наследие и схожие характеристики, но второй вид отлично выполняет свои функции в современных ситуациях, в то время как первые просто не смогли приспособиться к жизни в городе или пригороде; первые выполняют одну задачу: охотиться, чтобы выжить, вторые выполняют целый ряд задач и имеют свои подвиды для выполнения конкретных функций, как то: охота, охрана, участие в выставках и другие. Также и двигатели: от более ранних их версий требовалось всего немного - просто приводить в движение авто, чтобы то двигалось хотя бы не медленнее лошади, в то время как от современного двигателя требуется гораздо больше: быть тихим, и в то же время иметь достаточную мощь , чтобы соответствовать современным критериям, а, может быть, даже быть предметом гордости за свой автомобиль для его владельца.

Прежде чем мы поговорим о том, чем современные автомобильные двигатели отличаются от старых, необходимо понять автомобиля. В любом случае принцип один: смесь бензина и воздуха воспламеняется в камере под названием цилиндр . В цилиндре поршень, который получает давление из-за взрыва, перемещается вниз, а затем снова вверх по инерции и под действием другого поршня, который находится в прямо противоположном расположении относительно первого. Поршень прикреплён к коленчатому валу. Когда поршень перемещается вверх и вниз, это заставляет коленвал вращаться. Коленчатый вал затем выходит на коробку передач, которой и передаёт это вращение, и далее коробка передаёт ходовой части, апогей которой - колёса машины. Звучит просто, не так ли? С современными двигателями всё абсолютно также, но есть огромная куча нюансов.

Между тем, современный бензиновый двигатель ещё очень далёк от идеала эффективности - только представьте, из всей имеющейся химической энергии в бензине только около 15 её процентов преобразуется в механическую энергию, которая в конечном счёте движет автомобилем. Статистика говорит о том, что ещё более 17 процентов энергии теряется вхолостую и колоссальные 62 процента теряется в двигателе за счёт тепла и трения.

На фото слева: старый двигатель Saab; на фото справа: современный двигатель Mini Cooper

Современные двигатели имеют ряд технологий, чтобы сделать их более эффективными в работе. Например, технология непосредственного впрыска, которая смешивает топливо и воздух, прежде чем они будут перемещены в цилиндр, может улучшить эффективность работы двигателя на 12 процентов, потому что топливо сгорает более эффективно. Турбокомпрессоры и турбонаддув , которые используют сжатый воздух от выхлопной системы авто, делают эффективнее цикл сгорания. Сжатый воздух приводит к более эффективному сгоранию. Технология газораспределения и деактивации цилиндров являются такими новшествами, которые позволяют двигателю использовать только такое количество топлива, которое необходимо двигателю, аналогично повышая его эффективность.


Но одно из основных различий между современными автомобильными двигателями и "пожилыми" моторами заключается в том, что современные двигатели работают как бы в режиме "standby", в минимальном режиме, когда им не нужно разгонять машину. В старом 8-цилиндровом двигателе все восемь цилиндров работали независимо от того, находится автомобиль на холостом ходу или получает ускорение от педали акселератора так быстро, как мог бы. Кроме того, все восемь цилиндров получали такое же количество топлива в любой промежуток времени.

Сегодняшние двигатели имеют технологию, которая позволяет им работать умнее. Деактивация цилиндров - это система, которая позволяет некоторым цилиндрам в двигателе выключиться, когда они не нужны, например, когда автомобиль работает на холостом ходу или движется накатом, а педаль акселератора не нажата нисколько. Но когда необходима вся мощь мотора, то эти выключенные ранее цилиндры "просыпаются" и помогают остальным. Деактивация цилиндров помогает двигателям работать более эффективно, так как это означает, что двигатель использует только то топливо, которое необходимо, и прилагает только те усилия, которые необходимы для того, чтобы двигатель не заглох и чтобы производилось достаточно энергии для работы электроники, климат-контроля и прочих дополнительных функций машины.

Технология газораспределения, в свою очередь, помогает современным двигателям работать "умнее". Без этой системы клапаны открываются для того же количества топлива в течение одинакового количества времени и с таким же зазором в любое время, как бы ни старался работать двигатель. Это порождает большие отходы топлива. С переменной газораспределения отверстия клапанов оптимизированы для типа работы, который двигатель делает. Это помогает мотору потреблять меньше топлива и работать намного эффективнее.

Современные двигатели имеют много технологий, которые помогают использовать меньше топлива, производя больше энергии, чем старые двигатели, но у них есть ещё одна вещь, которой пренебрегли "пожилые" двигатели - это партнеры.

Сегодняшние автомобильные двигатели - это не только сложные технологические достижения, но это целая цепочка узлов и агрегатов, работающих слаженно всеми компонентами таких высокотехнологичных достижений, которые помогают им лучше выполнять свою работу. Так, раньше двух-трёх передач в коробке было вполне достаточно, сегодня четырёх- и даже пятиступенчатые КПП уже устаревают - современные двигатели оснащаются современными коробками передач с семью и даже восемью скоростями . Чем больше число передач, тем лучше двигатель работает сразу в двух направлениях: во-первых, в более широком диапазоне скоростей можно достичь более разнообразных оборотов двигателя, а, значит, ускориться медленно или быстро в зависимости от желаемых потребностей; во-вторых, экономить топливо более эффективно за счёт тех же оборотов. Но даже если восьми передач в коробке не хватает, современные двигатели могут иметь "партнерские отношения" и вовсе с бесступенчатой ​​трансмиссией (вариатором). В принцип работы вариаторов заложено бесконечное число передаточных чисел, что делает их в состоянии передать мощность двигателя на колёса наиболее эффективным способом в любом диапазоне скорости автомобиля.

В современные двигатели получают помощь от электродвигателей, работающих на аккумуляторных батареях. В то время как электродвигатель может питать автомобиль на медленных скоростях или вовсе только питать электрооборудование в машине, когда автомобиль останавливается, он также может генерировать дополнительную мощность, когда это необходимо, например, когда автомобиль ускоряется недостаточно быстро.

Но главный партнёр, что позволил значительно повысить эффективность двигателя - это, конечно же, бортовой компьютер , "мозги" автомобиля, который управляет и переключением коробки (кроме механической коробки передач), и обогащённостью и количеством впрыскиваемой в цилиндры топливо-воздушной смеси, и ещё огромным рядом функций.